RESEARCH REPORT 2013
25 years of clinical trials
The NHMRC Clinical Trials Centre at the University of Sydney, now 25 years old, runs large multicentre investigator-initiated clinical trials, undertakes research with national and international trial groups, and contributes expertise to trials run by others. It also:

- takes a lead in proposing new directions for clinical research in Australia, particularly research aligned with national policy and clinical practice
- participates in translational research, from bench to bedside
- conducts methodological research in relation to clinical trials
- reviews and synthesises evidence from completed trials, and is at the forefront of developments in methods, such as prospective meta-analysis
- supervises postgraduate students in all of these areas
- offers postgraduate degrees in clinical trials research
- runs short courses to train people for Australian medical research.

The CTC also offers health technology and diagnostic test assessments, economic analyses, biostatistical design and analysis, and automated central randomisation services.

Core funding is provided by the NHMRC, and specific projects are funded by government, public and private institutions and the pharmaceutical industry.

The CTC is at two sites in Camperdown in inner Sydney — the Medical Foundation Building on Parramatta Road and Chris O’Brien Lifehouse on Missenden Road.

This report covers the CTC’s achievements for 2013.
DIRECTORS’ REPORT 3
TIMELINE OF ACHIEVEMENTS 6
1. Improving quality of life and survival for people with cancer 8
 Gastrointestinal cancer (AGITG) 9
 Lung cancer (ALTG) 10
 Gynaecological cancer (ANZGOG) 10
 Urogenital cancer (ANZUP) 11
 Brain tumours (COGNO) 12
 Breast cancer (ANZBCTG and SNAC) 13
 Prognosis and survival studies 14
 Translational research and GCCTI 15
2. Preventing cardiovascular disease 16
 LIPID trial 16
 FIELD trial 18
3. Diabetes and vascular disease 19
 Diabetes trials 19
 Telehealth 20
 Laboratory research 20
4. A better future for newborns 21
 NeOProM and BOOST II 21
 INIS, APTS and LIFT 22
5. Evidence for clinical trials practice and policy 23
 Health economics 23
 Australian New Zealand Clinical Trials Registry 24
 Systematic reviews 25
 Cochrane Collaboration 25
 MSAC 26
 Diagnostic testing 26
6. Methodology 27
 Applied biostatistics 27
 Methodological research 28
7. Education 30
 Master of Clinical Trials (Research) 30
 Biostatistics Collaboration of Australia (BCA) 30
8. Collaborations 31
9. Funding 33
10. Current trials 34
11. Staff and staff activities 39
10. Publications 43
Directors’ report

This year, 2013, marks an important milestone for us. It is now over a quarter-century since the CTC was established. We started operations in late 1988, with an initial grant of $250,000 and a commitment to ongoing funding from the NHMRC and provision of facilities and services from the University of Sydney. By the end of the first full year, the CTC had 17 staff and was conducting and collaborating in large trials in cardiovascular disease and cancer, common diseases where small improvements make major differences to health.

Our initial objectives were to promote and help coordinate large-scale collaborative clinical trials throughout Australia; to provide a consultative service for smaller clinical trials in design and analysis; to provide an educational resource to help clinical investigators run their own trials, to assist practitioners evaluate trial results for clinical decision making and to initiate appropriate academic courses; and to develop and promote research in clinical trials methodology and research aimed at improving the impact of clinical trial results on medical practice.

These initial goals still largely reflect the philosophy of CTC today. Over our first 25 years there have been many examples of research that has changed clinical practice and health outcomes.

Highlights of first 25 years

In cardiovascular disease, a longstanding research focus for us has been prevention. Treatments that reduce the risk of cardiovascular events can benefit many thousands of Australians. The LIPID coronary disease prevention study, completed in 1998, was then the largest trial undertaken in Australia. Its results, that statin therapy reduced mortality in people with average cholesterol levels, had a major impact on health and on treatment guidelines in Australia and elsewhere. Cost-effectiveness analyses showed that the treatment and the trial itself were both economically worthwhile, and long-term follow-up has shown that the treatment is safe. LIPID is also a contributor to the ongoing 20-year-old Cholesterol Treatment Trialists’ Collaboration, an international prospective meta-analysis collaboration, now comprising 27 trials and 170,000 patients, co-founded and co-coordinated by the CTC. It has delivered precise and convincing evidence on the benefits of statin therapy.

The FIELD fenofibrate study, 1997–2005, was a trial of a potential treatment for coronary disease risk, but fenofibrate was unexpectedly shown to be very effective in preventing vascular complications of diabetes. In 2013 fenofibrate was approved by the Therapeutic Goods Administration for diabetic retinopathy and has been approved in the EU and USA for co-prescription with statin therapy for dyslipidaemia.

Both LIPID and FIELD are yielding new insights into the risk factors, biomarkers and mechanisms of cardiovascular disease as we continue to follow up patients and analyse biological samples in relation to later clinical events. FIELD is also exploring mechanisms of diabetes affecting eye disease, kidney disease and foot ulcers.

The CTC has played a significant role in the assessment of treatment strategies for acute coronary syndromes over many years in collaboration with international trialists of the VIGOUR organisation. More recently, in trials of venous thrombosis, we showed in ASPIRE that aspirin is an inexpensive and effective long-term treatment for preventing recurrent deep-vein thrombosis. The cost of the trial is likely to be overtaken within two years by national savings in thrombosis treatment prevented.

Clinical trials in cancer have involved collaboration with many cancer cooperative groups—trials in prevention, surgical treatment, chemotherapy and novel targeted therapies. Examples include the international IBIS trial with the ANZ BCTG where for women at risk, breast cancer incidence was reduced by a third after five years of tamoxifen, a reduction that was maintained over 10 years of follow-up, the SNAC trial, in collaboration with the RACS, of minimally invasive sentinel node biopsy management instead of routine axillary clearance surgery for early breast cancer. The newer treatment results in better quality of life and has now become the standard of care.

continued...
Controlled clinical trials are the most scientifically valid way to evaluate new treatments for patients and can also be used to evaluate any form of intervention aimed at treating or preventing disease and improving health.

Controlled clinical trials can be used not only to identify significant, real advances in medical care but also to identify ineffective therapies which may have appeared promising in uncontrolled studies.

Large-scale clinical trials are of important value in directing small, but humanly worthwhile, improvements in treatment.

— John Simes, 1988

The promise of individualised treatment was realised by the international CO 17 trial in collaboration with AGITG, a biomarker study in which colorectal cancer tumours responded to cetuximab chemotherapy only if they did not have a K-ras mutation. International guidelines now recommend patients have genetic testing so that only susceptible tumours are treated, sparing other patients an ineffective treatment, with potential cost saving of many millions of dollars worldwide.

Provision for biological and genetic studies is an integral part of the design of our cancer trials. Similarly, most of our trials now include data collection for prospectively planned cost-effectiveness analyses.

Our neonatal trials began in 2001 with INIS, evaluating the use of immunoglobulin to prevent later disability or death in newborn infants with infection. Immunoglobulin has been recommended in clinical practice on the basis of some evidence, but the INIS trial showed conclusively in 2011 that it did not make a difference, with the result that patients could avoid unnecessary treatment and hospitals could save its cost.

Notable among our recent achievements is the BOOST II neonatal study, published in 2013, which addressed the long-standing question of the optimal supplemental oxygen target concentration for premature infants. The trial’s higher target resulted in better short-term survival outcomes than a lower target for currently used oximeters. The impact of this on practice still awaits the assessment of long-term outcomes with further follow-up and confirmation by combined analysis of international data from over 5000 infants in this and similar trials.

We have had leading roles in international meta-analysis collaborations in cardiovascular disease and neonatology for many years and other areas more recently. As well, we coordinate reviews on clinical evidence for the Cochrane Collaboration and undertake systematic reviews of new medical technology for the Australian government. Allied to this is our important research interest in developing methods for evaluating clinical tests.

Clinical evidence from systematic reviews must be comprehensive to minimise bias, so these analyses depend on public trial registration. The Australian New Zealand Clinical Trials Registry based at the CTC is the realisation of an early aspiration. Launched in 2005, the ANZCTR now has about 9000 registered clinical trials helping inform ongoing trials research and as a resource for reviews of trial evidence.

Trial design has diversified since 1988 as research has sought ways of reaching objectives while minimising cost and expense. Refinements in methods developed here and elsewhere improve the way we conduct our own trials and are shared in the teaching and consultation activities of our biostatistics group.

Building capacity for Australian expertise in the design and conduct of clinical trials is an important activity. The new postgraduate program in clinical trials research is now well established.

In 2013, we received over $20 million in grant funding from public and charitable sources. This is the first year of our current five-year NHMRC program grant for advancing the
evidence base in national priority areas for health, the third such grant received by the CTC, but the first for a collaborative undertaking (with the Boden Institute of Obesity, Nutrition, Exercise & Eating Disorders). The grant is supporting multidisciplinary collaborative research focusing on diseases with substantial mortality and morbidity.

We have had to anticipate and respond to changes in the landscape of clinical trials over 25 years, both global and national. Our objectives from 1988 have been achieved and developed into new questions, new methods, new ways of conducting trials, and new ways of using trial evidence to improve health outcomes.

The next 25 years

There are exciting and challenging times ahead in clinical trials research. There has been an explosion of new knowledge about patient and disease characteristics based on the human genome, with novel targeted therapies and more individualised therapeutic strategies. Costs of health care are continuing to rise and regulatory challenges continue. In such an environment, clinical trials research will be even more important in identifying the most effective and cost-effective treatments. But more efficient trial design and governance will be required to ensure this system is sustainable and remains competitive—with greater use of adaptive designs, the need for more efficient trial operations embedded in the health care system and the ability to work effectively with clinical trial networks integrated into health care.

After the MJA summit on the future of clinical trials in 2012, a group of leading Australian clinical researchers came together as an interim committee to lead formation of the Australia Clinical Trials Alliance (ACTA), with the purpose of cooperating on common issues affecting investigator-initiated trials in Australia. These issues relate to funding, advocacy, identifying gaps in research, sharing infrastructure (such as biobanks and biostatistical expertise), translating research into clinical practice and sustaining the health system. We are pleased to be part of this exciting new venture, to be formalised in 2014, designed to benefit research, the health care system and patients.

On the positive side, methodological and technological advances will allow us to administer our trials more efficiently and potentially better ways of doing research can be investigated by integrating trials seamlessly with electronically recorded clinical care, at much lower cost than the current model of separate research.

Well-conducted randomised controlled trials remain the best way of determining the efficacy of new treatments. There will be challenges in integrating research with basic science and clinical care, requiring new methods and new partnerships. We will be part of the solutions by generating new evidence, and interpreting, combining and applying the evidence to improve health outcomes.
1988
- CTC sets up offices in 5 uncarpeted rooms in the basement of the Edward Ford Building, University of Sydney, with two staff.

1989
- CTC establishes statistical and randomisation centre for the ANZ BCTG.
- CTC expands to 10 rooms and 17 staff.

1990
- International tPA/streptokinase mortality trial completed.

1991
- The first GUSTO trial opens for recruitment.
- The first of regular short courses on clinical trials presented.

1992
- The CTC starts collaborating with the AGITG.
- CTC establishes and collaborates with the Australian New Zealand Germ Cell Trials Group (ANZ GCTG).
- Randomisation of over 9000 patients in the LIPID trial completed.

1993
- First GUSTO international trial closed and published, with 2287 patients in Australia and 41,021 internationally.
- CTC pioneers dynamic balanced randomisation.

1994
- National Cancer Trials Registry is set up to disseminate information about current cancer trials.
- FIELD diabetes trial launched by the Minister for Health.
- Cochrane’s Prospective Meta-Analysis Methods Group founded and based at the CTC.

1995
- Collaboration with the NSW Cooperative Oncology Group (NCOG) on investigator-initiated cancer trials.
- The CTC and the National Breast Cancer Centre initiate a collaborative review group for the Cochrane Collaboration.

1996
- The CTC outgrows its offices and moves to Mallett Street in Camperdown.

1998
- The LIPID trial completed and published.

2000
- Biostatistics Collaboration of Australia founded.

2001
- INIS, CTC’s first neonatal trial, begins in collaboration with NPEU.
2002
- International Clinical Trials Symposium.
- ANZGOG established.
- 5-year NHMRC program grant for CTC research team awarded.
- SNAC trial begun after patients’ concerns about complications of breast cancer surgery.

2004
- Australian Lung Cancer Trials Group (ALTG) formed, and CTC’s first lung cancer trials begin.

2005
- The national Australian Clinical Trials Registry formally established at the CTC.
- First prospective meta-analysis of the CTC—14 trials, 90,000 patients—shows conclusively that statin drugs reduce risk.
- FIELD trial—with nearly 10,000 patients with diabetes—completed and published.

2006
- Biostatistical meta-analysis settles the controversy about radiotherapy after mastectomy, finding that it is beneficial.
- CTC researchers devise a strategy for evaluating diagnostic tests, which becomes the basis for guidelines used by the Medical Services Advisory Committee on Medicare funding for new tests.

2007
- ANZ GCTG and APUG amalgamate to form ANZUP.
- Interpreting and reporting clinical trials published by AMPCo.
- Communicating prognosis and issues surrounding the end of life report published and becomes the basis for Australian guidelines.
- International Clinical Trials Symposium.
- Cooperative trials Group for Neuro-Oncology (COGNO) established.
- PARIS meta-analysis shows aspirin prevents pre-eclampsia, benefiting mother and baby.

2008
- 5-year NHMRC program grant for CTC research team awarded.
- Symposium: ‘20 years of clinical trials’.
- CO.17 investigators identify K-ras gene mutation as target for cetuximab.

2009
- Health economics group is formally set up at the CTC.

2010
- NIS shows that intravenous immunoglobulin does not benefit infants with infections.
- Master of Clinical Trials enrols its first students.
- MAPPINO shows that NO does not improve lung function in premature infants.

2011
- INIS shows that intravenous immunoglobulin does not benefit infants with infections.
- Master of Clinical Trials enrols its first students.
- MAPPINO shows that NO does not improve lung function in premature infants.

2012
- ASPIRE shows that aspirin is an inexpensive way to prevent recurrent thrombosis.
- New evidence from BOOST II helps to establish the optimum oxygen level for newborns.
- CTC results—27 trials, 174,000 patients—even people at low risk benefit from lipid-lowering treatment.
- Laboratory studies in diabetes established at the CTC.
- Sydney Catalyst: the Translational Cancer Research Centre of Central Sydney and Regional NSW founded: director, John Simes.

2013
- CTC’s 5-year collaboration with the Boden Institute (BIONE) and Macquarie University formally begins.
- Australian Clinical Trials Alliance established by clinical trial leaders to advance investigator-initiated trials research.
- The CTC’s trials group move to Lifehouse, a new multidisciplinary centre for integrated cancer care and research.

2013: Lifehouse
Oncology research

The CTC’s oncology group of over 40 staff work with national cancer collaborative groups to conduct trials and associated research that will improve the outcomes of people with various cancers. These collaborations develop new concepts into working trials. The trials result in high-level evidence which is translated into standards for cancer treatment and prevention.

The CTC works collaboratively as coordinating centre or collaborating sponsor with the Australasian Gastro-Intestinal Trials Group, the Australia New Zealand Gynaecological Oncology Group, Australian and New Zealand Urogenital and Prostate Cancer Trials Group, Australasian Lung Cancer Trials Group and the Cooperative Trials Group for Neuro-oncology. The CTC is the statistical centre for the Australian and New Zealand Breast Cancer Trials Group and conducts the SNAC breast cancer trials with the Royal Australasian College of Surgeons.

Some recent achievements are described in these pages.

In 2013 the CTC’s oncology group embarked on ways to improve processes working with these collaborators and others, including research nurses, data managers and pharmacists, international counterparts, such as the NCIC CTG in Canada, the Medical Research Council in the UK and the European Organisation for Research and Treatment of Cancer, funders, such as Cancer Australia, the NHMRC and the Cancer Institute, and commercial partners. The quest for these improvements has come in the context of the busy day-to-day running of these important cancer trials. The studies address clinical questions not only about advancing treatments, but also on quality of life, cost issues and translational biological substudies.

In its research outcomes, the group and its collaborators had a bumper year, publishing 48 journal papers and delivering 40 research presentations at major international conferences, 18 of these at the American Society of Clinical Oncology Annual Meeting. Some were substudies on biomarkers, quality-of-life or economics analyses, some were some early notifications of trials in progress, and some were final results of completed trials.

Burcu Vachan, oncology program manager, and Sonia Yip, oncology senior translational research fellow and manager

Martin Stockler, co-director of the CTC’s oncology trials
The CTC has been conducting trials with the Australasian Gastro-Intestinal Trials Group since the early 1990s. In that time the collaboration has published nearly 80 articles in scholarly journals and presented over 130 study findings at national and international conferences. In 2013, the group presented final results of ATTAX3, an Australian trial of adding panitumumab to standard chemotherapy as a treatment for advanced oesophagogastric cancer, a cancer associated with poor prognosis. Panitumumab is a human monoclonal antibody targeting the epidermal growth factor receptor. It has had some success as a treatment for colorectal cancer, but this trial showed that the treatment did not benefit patients with oesophagogastric cancer. The results of the LAP07 pancreatic cancer trial were also presented, similarly showing that radiotherapy in addition to standard chemotherapy did not improve outcomes. Both these trials will spare future patients ineffective additional treatments as the search for better treatments goes on. A new trial for 2013, ASCOLT, is testing the efficacy of aspirin in reducing recurrence in people who have already had surgery and treatment for colorectal cancer.
Lung cancer (ALTG)

The Australasian Lung Cancer Trials Group was formed in 2004, the same year the first of its trials with the CTC were initiated. Trials have been conducted in non-small-cell lung cancer and mesothelioma. Mesothelioma is a form of lung cancer caused by exposure to asbestos and is usually only detected when it is advanced. New drugs for treatment after initial chemotherapy are badly needed. A new agent, BNC105P, which targets the blood vessels in tumours, suppressing tumour growth, was recently tested for efficacy and safety by ALTG investigators. Unfortunately, it did not live up to its promise. It was not effective on its own, but may act to improve the delivery of other treatment, so future investigations will examine combinations with chemotherapy drugs.

Gynaecological cancer (ANZGOG)

Since 2000, the Australia New Zealand Gynaecological Oncology Group, whose trials are coordinated at the CTC, has been the lead group for trials in ovarian cancer, cervical cancer, and cancer of the uterus, vulva and vagina. The group aims to initiate and conduct trials covering surgery, drug treatments and radiation, as well as biological research and quality-of-life studies. Most importantly, research questions reflect the needs of patients. The group also emphasises engagement of patients and their families with the research process. The ANZGOG-CTC Symptom Benefit trial is an open international quality-of-life study, which is measuring subjective improvement as well as the tumour response in women who have palliative needs.
Improving Quality of Life and Survival for People with Cancer

Anne Long, clinical research fellow, and Professor Ian Davis, chair of ANZUP

Dr Alison Brand, chair of ANZGOG

Chemotherapy after ineffective platinum chemotherapy for advanced ovarian cancer. The Australian investigators recently published a substudy of the relationships among expectations, hope, and depression in the participants. They found that if women’s hopes were not fulfilled, they were more likely to become depressed. This has implications for the way that clinicians communicate with these patients.132

The collaboration undertook a substudy of the Australian Ovarian Cancer Study, looking at physical symptoms, coping styles and quality of life in the last year of life of women whose cancer had recurred.111 The findings are important for patients and their doctors who have to make decisions about treatment and supportive care at the end of life.

Urogenital cancer (ANZUP)

The CTC is coordinating centre for the trials of the Australian and New Zealand Urogenital and Prostate Cancer Trials Group, formed 5 years ago to meet a need to improve treatment of bladder, kidney, testicular and prostate cancers through clinical trials research.

The successful completion in 2013 of Accelerated BEp, the pilot trial of an accelerated chemotherapy regimen for testicular cancer, showed that the treatment was safe, feasible and active, leading the way for a new large international trial to obtain high-level evidence on definitive treatment for men with testicular cancer, particularly those at high risk. This trial, which will be led by ANZUP and the CTC, is currently being initiated. An Australia-wide survey of current patterns of management of this disease by medical oncologists53 indicated a need for evidence-based guidelines, expected to be the end result of the new trial.

An essential precursor to any new clinical trial is a thorough review of the current evidence on the clinical question. This is the case for a new phase 3 trial of a treatment regimen for bladder cancer, BCG+MMC, expected to open in 2014. CTC and ANZUP researchers undertook a systematic review and meta-analysis of available evidence on the effect of intravesical (that is, introduced directly into the bladder) chemotherapy added to standard therapy. This review recommended that a further trial was warranted but that only some stages of bladder cancer were responsive to the treatment. The treatment will now be tested in the new trial, with participation in the trial limited to patients who have these specific tumours.
The Cooperative Trials Group for Neuro-Oncology (COGNO) is a relatively young collaborative investigator group. It was established in 2007 in response to a need for a coordinated, structured approach to the management of large-scale, multicentre brain cancer trials in Australia.

COGNO’s annual scientific meeting in 2013 was its first stand-alone conference. This annual event is a forum where current work by local and international research leaders is presented and where ideas for new trials are conceived. So far there have been few trials in this area. Foundation work by COGNO researchers has included determining the current status of treatment in Australia. The first Australia-wide study of patterns of care for glioblastoma, published in the Asia-Pacific Journal of Clinical Oncology, and another study on care for medulloblastoma, presented at the American Society of Clinical Oncology, both found variations in aspects of treatment, pointing to specific needs for future clinical trials on treatment strategies.

The CABARET trial is an ongoing study of treatment for glioblastoma, an aggressive brain cancer. Glioblastoma that recurs after initial treatment currently does not have standard treatment. The trial investigated bevacizumab, a monoclonal antibody that inhibits the growth of new blood vessels in tumours, with or without carboplatin chemotherapy. The preliminary results, that adding carboplatin to bevacizumab did not result in clinical benefit compared with bevacizumab alone, were presented at the meeting of the American Society of Clinical Oncology. This study is also providing data for substudies and exploratory analyses, including the benefits of continuing versus stopping bevacizumab after disease progression, and a validation of the criteria for assessing tumour response.
Breast cancer

The CTC is the statistical and randomisation centre for the Australia and New Zealand Breast Cancer Trials Group, doing methodological research, statistical design of new studies, management of quality of life and cost-effectiveness protocols, systematic reviews of data quality and analyses of current trials.

CTC statisticians and oncologists recently published data from an early ANZ BCTG trial to test trade-offs in quality of life and survival with two different chemotherapy regimens for advanced breast cancer. The investigators assessed patients’ quality of life while on chemotherapy and also assessed side-effects associated with treatments. They found that the more toxic but also more effective regimen was associated with more improvement in progression-free survival adjusted for quality-of-life score than the lesser toxic but also less effective therapy.

The methods used, of weighting quality-of-life assessment by patients to obtain global scores and integrating weighted scores with survival outcomes, were methods initially developed by CTC statisticians and their colleagues in the past. When applied to this breast cancer trial, the methods provided a complete picture of the balance of benefit and harm, and are recommended for use in future trials where trade-offs of toxicity with tumour response and survival exist.

Sentinel Node Biopsy Versus Axillary Clearance (SNAC)

SNAC was a trial to compare the outcomes of sentinel lymph node biopsy compared with axillary node clearance in early breast cancer. Axillary node clearance, a more invasive procedure, often results in arm swelling (lymphoedema).

SNAC was notable in that it arose directly from concerns of patients, who felt that lymphoedema was underestimated by the medical profession. At the National Breast Cancer Conference in 1998, those present recommended that researchers collect and report evidence on lymphoedema and the different surgical options for early breast cancer.

SNAC began in 2001 as a collaboration between the Royal Australasian College of Surgeons and the CTC with funding from the Medical Benefits Fund and the Department of Health and Ageing. It was completed in 2005 after very rapid recruitment, which was partly attributed to the interest of consumers in this question.

The investigators reported that, after one year, women who did not have an axillary clearance had less arm swelling. Arm swelling increased over time. Patients are still being followed up for lymphoedema and other effects of surgery, and data from the trial will contribute to a prospective meta-analysis of recurrence of breast cancer after the trial treatments.
Cancer studies that address patients’ circumstances and psychological needs

Most clinical trials in cancer investigate novel treatment regimens to maximise survival and quality of life. However, most trials also generate data that can be analysed to find the best ways of meeting the psychosocial needs of patients. This is used in studies of, for example, how oncologists can predict and communicate likely survival in the context of uncertainty, and how much treatment individual patients will freely endure for survival.

Survival and prognosis

People with advanced cancer often want information about their expected survival time, and those wanting information prefer to receive estimates for the possible worst-case, typical and best-case scenarios rather than receive a single number estimate of median survival. It is difficult for oncologists to estimate and explain survival time in a meaningful way. In a study recently published in the Journal of Clinical Oncology, CTC researchers and their colleagues examined the accuracy and usefulness of oncologists’ estimates of survival time for patients with mixed incurable cancers. Although the actual estimates were not accurate, they were useful and accurate as a basis for estimating worst-case, typical and best-case scenarios. For patients requesting information on their likely survival time, presenting this information as three scenarios should improve patient understanding and help with decision making and planning.

Preference studies

The CTC and its collaborative groups have a reputation for useful observational studies investigating attitudes to chemotherapy from the patient’s point of view—that is, asking patients to articulate the increase in survival that would make their chemotherapy worthwhile. Two of these studies by ALTG (p. 10) and the CTC, one eliciting patients’ preferences and the other eliciting clinicians’ preferences, were presented at the World Conference on Lung Cancer in October 2013. The patients, who had non-small-cell lung cancer, indicated that chemotherapy was worthwhile for moderate improvements in survival. Clinicians’ preferences were similar but less varied. These investigators also sought to find out patients’ preferred and actual levels of involvement in decision making. Their preferences were varied but stable, prompting the conclusion that clinicians should talk to patients and consider their preferences for involvement in decision making when discussing chemotherapy treatment for lung cancer.

For advanced ovarian cancer, the standard treatment is infusion of chemotherapy drugs. However, in terms of acting on the tumour, delivering chemotherapy directly into the abdomen would be ideal because it exposes the tumour to a higher concentration of drugs. This is not commonly done in Australia because of concerns about side-effects and inconvenience. ANZGOG and CTC investigators (p. 10) have completed a trial to determine the feasibility of this method, looking at survival, complications, quality-of-life measures and patients’ preferences in trade-offs between survival and quality of life.
Patients judged treatment worthwhile for a survival improvement of months, but their responses were tempered by the greater toxicity and inconvenience of this method. Preference studies such as this are recommended in all treatment trials, because they can help determine the acceptability and likely uptake of the regimens.

Translational research in cancer

Translational research aims to integrate all phases of medical research, from scientific innovation in the laboratory through various phases of clinical trials to ways of implementing research findings in clinical practice. This integration speeds the long pathway between scientific discoveries and their practical use to improve the outcomes for patients.

The CTC has a close relationship with Sydney Catalyst: the Translational Cancer Research Centre of Central Sydney and Regional NSW. This consortium brings together teams of clinicians and researchers from more than 20 member organisations. Its offices and staff are co-located with the CTC and CTC director John Simes is founding and current program director of Sydney Catalyst.

During 2013 Sydney Catalyst celebrated important milestones, including a growth in membership (from just over 200 in 2012 to more than 330 at the end of 2013), a highly successful International Translational Cancer Research Symposium in May with over 120 participants, more than 500 publications, close to $45 million in competitive funding from a subset of members and good progress against important flagship projects in lung and pancreatic cancers.

Clinical trials and translational research

Patients enrolled in clinical trials receive the best treatments for their particular disease, but individual patients may respond differently depending on the individual characteristics of their tumours, including the proteins expressed by the DNA in the tumour. Drugs that act against protein expression, such as monoclonal antibodies, are used in cancer treatment, but some patients may benefit from the treatment and some may not. There are many unknowns in the use of these promising anticancer agents.

Most of the CTC’s clinical trials include analysis of tumour tissue and blood samples in laboratory studies that compare the tumour and blood characteristics with the individual response to treatment. Ultimately, this information should improve treatment planning, allowing clinicians to test patients and identify who would benefit from particular drugs.

Detecting such tissue and blood biomarkers to predict a patient’s response to a therapy is a focus of the laboratory studies associated with the CTC’s clinical trials. For example, the monoclonal antibody tested in the completed MAX trial, bevacizumab, which acts against vascular endothelial growth factor, is now included in initial therapy regimens for metastatic colorectal cancer because it improves patient outcomes. It is known to bind to and inactivate one kind of vascular endothelial growth factor, but the drug’s action against its targets is complex and so far survival benefits have been modest. Current research focuses on examining tumour tissue for biomarker subtypes in the light of known patient responses to bevacizumab.112

GENOMIC CANCER CLINICAL TRIAL INITIATIVE (GCCTI)

The GCCTI is a 3-year program to support the national cooperative cancer clinical trials groups, including those described in these pages, in developing trial protocols testing new drugs whose molecular target may be common to different cancer sites. The process will cover generating and prioritising ideas, developing these concepts and making applications for national and international grants.

The GCCTI aims to develop at least one new protocol per year. In 2013 the group held the first of its annual concept workshops.

The program is funded by Cancer Australia and managed by the CTC, with chief investigator Martin Stockler, clinical leads Chee Lee and Katrin Sjoquist, and senior translational fellow Sonia Yip, in partnership with independent consulting group ZEST Health Strategies.

Katrin Sjoquist, clinical lead for GCCTI, and research student Afelah Roohullah
Cardiovascular research

Cardiovascular disease is the underlying cause of more than 1 in 5 deaths in Australia. Research evidence in this area, when translated into prevention and treatment, can therefore make a big difference to health. In recent years, the death rate has been declining.

The CTC aims to undertake trials aimed at improving treatments, evaluating best available therapies and addressing areas where individuals at high risk are currently untreated. The CTC has been responsible for coordinating nine large cardiovascular trials in Australia. Seven of these were international collaborative trials of treatments for acute coronary syndromes, and two, LIpID and FIELD, were prevention trials designed and implemented in Australia and New Zealand. In total, the CTC randomised 26 565 of the patients enrolled these trials.

With improvements in methods and interpretation, meta-analysis of the results of all trials with the same entry criteria and measured outcomes have become an alternative to large randomised trials. If meta-analyses are prospectively planned, they provide the same strength of evidence of a large trial but are easier to initiate and manage.

The CTC co-coordinates the Cholesterol Treatment Trialists’ Collaboration, a prospective meta-analysis group set up in the early 1990s by the CTC and the Clinical Trial Service Unit at Oxford. The group is now analysing data from 27 cholesterol-lowering trials totalling nearly 170 000 people.

LIpID

Biomarkers of cardiovascular risk in the LIpID study

The Long-Term Intervention with Pravastatin in Ischaemic Disease (LIpID) study showed that statin treatment reduced the risk of a second or further coronary event in people with heart disease. Blood samples collected over the first 6 years of the trial are being analysed to shed light on how biomarkers are related to heart disease risk.

For example, it has been thought that statins reduce cardiovascular risk by reducing LDL cholesterol, but more recently that other mechanisms are also important. The LIpID study investigators assessed Lp-PLA2, an enzyme found in blood vessel plaque. They found that pravastatin treatment reduced Lp-PLA2 levels, and this accounted for much of the reduction in subsequent heart attacks. Other analyses showed that lipoprotein a and troponin levels were significant risk factors for future cardiovascular events.

More of these biomarker analyses are ongoing or yet to come. The LIpID Australian and New Zealand investigators are collaborating with scientists from Germany, Sweden and the United States.
LIPID: AN EARLY CTC LARGE-SCALE MULTICENTRE TRIAL

The LIPID trial of cholesterol-lowering treatment with pravastatin was a major achievement of the CTC in its early days. The trial recruited patients who had recently had a coronary event but had normal cholesterol levels. Over 9000 patients from 87 hospitals in Australia and New Zealand were randomised between 1990 and 1992 and then followed up for 6 years.

The treatment significantly and cost-effectively reduced mortality and major cardiovascular events. Overall mortality was reduced by 23% and coronary heart disease death by 24%. Clinical evidence from LIPID enabled subsidy for pravastatin treatment through the Pharmaceutical Benefits Scheme in 1999 and change in the Australian treatment guidelines.

Blood samples were collected from patients at entry to the trial and during the trial. Research is now focusing on what the blood samples can tell us about coronary heart disease.

The LIPID group is also analysing data on deaths and cancers in the patients over 16 years of follow-up.
Fenofibrate Intervention and Event Lowering in Diabetes (FIELD)

Patients from the completed FIELD trial are still being followed up through regular questionnaires and data linkage.

The investigators are also using blood samples taken during the trial and its follow-up to study the effects and mechanisms of fenofibrate treatment and to determine biological and genetic markers of the risk of various manifestations of cardiovascular disease and diabetes complications.

Action of fenofibrate in mice

Fenofibrate was originally described as a PPAR-α agonist, acting on blood lipids to reduce the risk of vascular diseases. A substudy of the FIELD trial in 2010 unexpectedly showed that fenofibrate dramatically reduced the risk of amputation, leading the investigators to look for further mechanisms of action of fenofibrate.

Since then animal and laboratory studies to tease out this effect have been done. In a study by Rajamani and colleagues, the blood flow in the hind limbs of diabetic mice was reduced in a simulation of blood vessel damage. Then fenofibrate treatment ameliorated the effect, restoring blood to the extremities and allowing the paws to move. Associated tissue studies revealed that fenofibrate appeared to promote new blood vessel formation. Molecular pathway studies are ongoing.

High bilirubin equals low amputation risk

People with diabetes have a higher-than-normal risk of amputation of toes or feet due to blood vessel disease. As an early step in finding a way of reducing this risk, FIELD investigators tested bilirubin in the blood as a possible predictive marker. Bilirubin is known to have antioxidant and anti-inflammatory properties which may protect the blood vessels. The investigators found a significant association between lower bilirubin levels and higher risk, raising the hypothesis that bilirubin may protect against amputation.

Is HDL cholesterol linked to poor glucose control in diabetes?

HDL (good) cholesterol is often low in people with type 2 diabetes and may be low years before diabetes becomes apparent. The FIELD team are investigating whether HDL biology contributes to the development and progression of type 2 diabetes. Initial results, presented at the meeting of the Cardiac Society of Australia and New Zealand, suggest that levels of HDL cholesterol and its components are directly related to slowing diabetes progression, a finding that is being further explored for full publication in the near future.
Diabetes and vascular disease

Type 2 diabetes is an increasing health burden in Australia and worldwide. Often, the diagnosis of type 2 diabetes is made only when symptoms occur, after many years of high blood glucose. Type 1 diabetes, which often presents in childhood and requires daily insulin injections, affects over 122,000 Australians and is increasing in incidence. Both forms of diabetes can irreversibly damage the kidneys, blood vessels, nerves, heart and eyes. Investigators at the CTC and their clinical co-workers continue to seek ways to predict and prevent diabetes, to reduce the destructive consequences of diabetes and to use technology to improve diabetes care. The international FIELD trial, 1997–2005, is still providing data for blood marker and other substudies. FIELD is now joined by REMOVAL, which aims to test the use of metformin, a type 2 diabetes medication, for preventing blood vessel damage in adults with type 1 diabetes.

Many research efforts are focusing on earlier diagnosis and prevention of diabetes and its complications. At the CTC, these range from laboratory-based cell and animal model studies to the new T4DM and FAME1-EYE clinical trials.

REMOVAL: a new trial of an old drug

Metformin is a common, inexpensive and usually well-tolerated drug used for blood glucose control in type 2 diabetes. It also reduces cardiovascular complications and reduces insulin resistance, which can also be a feature of type 1 diabetes. A new international type 1 diabetes trial is being conducted to discover whether metformin can slow or prevent atherosclerosis. During 3 years of metformin treatment or placebo, participants are having scans to assess changes in their blood vessels and heart.

Testosterone for the prevention of diabetes mellitus (T4DM)

Low testosterone levels are often associated with lower motivation to exercise, lower muscle mass and with a higher risk of type 2 diabetes. The T4DM trial is recruiting 1500 middle-aged men who have low testosterone levels and prediabetes, that is, higher than normal blood glucose levels, to see whether treating them with a weight-loss diet and testosterone supplements over 2 years can prevent progression to full-blown diabetes. The men are initially screened on the basis of their waist circumference and then screened again by blood tests for testosterone levels and blood glucose. Investigators expect to screen 24,000 Australian men during recruitment. The study design and progress to date were presented in 2013 at the World Diabetes Conference.

Fenofibrate and Microvascular Events (FAME1-EYE)

Irreversible vision loss is a most feared complication of diabetes. The FIELD type 2 diabetes trial showed that the lipid-modifying drug fenofibrate was effective against vision-threatening diabetic damage to retinal blood vessels in the eye. Laboratory studies have backed up these findings and shown how the drug works. In a study published in 2013, it was shown that in mice with type 1 diabetes, fenofibrate, administered orally or by injection, reduced inflammation and leakage from the blood vessels in the eye. Now a major new trial is investigating the use of fenofibrate tablets to protect the vision of people with type 1 diabetes who have early diabetic retinal damage. Investigators from the CTC, the University of Melbourne and Westmead Hospital in Sydney are collaborating in the FAME1-EYE study, a 3-year double-blind, placebo-controlled trial of daily fenofibrate for 450 adults with type 1 diabetes...
Should the results prove positive, an existing, low-cost, well-tolerated treatment to reduce the personal and economic burden of the complications of type 1 diabetes could rapidly be translated into clinical practice world-wide.

Using technology to improve health care in remote areas

The diabetes group has extended its research into telehealth, a model of patient care that can improve health care access, particularly in rural and remote areas. Whereas in cities the death rate from diabetes-related causes has dropped in recent years, it has remained stable at about 4.5 deaths per 100,000 among people living in regional and remote areas. Type 2 diabetes is especially prevalent among people in Aboriginal communities, and retinal eye disease is a common complication.

The Telehealth Eye and Associated Medical Services (TEAMSnet) collaboration has embarked on a program to use internet and mobile technologies to provide eye examinations and coordinated diabetes and heart care to indigenous Australian people. Patients and consumers may be ahead of health care professionals in the use of new technology. The diabetes study is recruiting participants from 3 Aboriginal communities in the Northern Territory. The research group will monitor and analyse images of the retina via telecommunication channels and will also evaluate education, coordination of medical care, patient preferences and clinical decision making. The group has already obtained valuable insights into telehealth: care delivered by a virtual team can optimise health outcomes, telehealth supports shared decision making. These findings were presented at the 2013 meeting of the Australian Diabetes Society.

Laboratory research

RNA-based analysis for prediction of islet death

Blood glucose levels are normally tightly regulated by insulin released from beta cells in the pancreas. Insulin lowers blood glucose levels and enables the body’s cells to utilise and store the energy in glucose. By the time type 1 diabetes is diagnosed, over two-thirds of the pancreatic beta cells have been killed by inflammation and immune attack, usually over several years. Beta cell death also contributes to the progression of type 2 diabetes glucose-control treatment from diet and exercise alone, to tablets, to insulin injections. RAPID is a laboratory study searching for biomarkers that may allow diabetes to be predicted before the damage is done and to monitor the efficiency of protective treatments. A class of RNA (genetic) molecules (microRNAs) regulating gene expression are being investigated as potential markers of beta cell damage. The RAPID investigators have developed a method to identify microRNAs as markers of pancreatic cell death. They are continuing to analyse levels of various microRNAs in the blood, with the eventual goal of a blood test that could detect loss of pancreatic cells before the clinical onset of diabetes or monitor treatments to slow down damage to the pancreas.
Clinical trials and meta-analyses in neonatology

The NeOProM meta-analysis

Although oxygen treatment for premature babies has been in use for 60 years, the best level of oxygen to prevent death and disability is still not known.

Different levels of oxygen, even though they may differ by only a few percentage points, have different benefits and harms. Too much oxygen may cause vision loss; too little oxygen may lead to death from lung disease. Although several trials have been completed, testing this question properly requires at least 5000 participants, which is beyond the resources of any single trial group. Instead, five trial groups are cooperating in a prospective meta-analysis, called NeOProM, started in 2003 and now nearing completion.

The CTC’s BOOST II trial is following up 1055 infants born very prematurely in Australia and New Zealand over two years. In BOOST II they were randomly allocated to 85–89% or 91–95% oxygen saturation. Recruitment to the trial was stopped after an analysis of data from BOOST II and other NeOProM trials showed better survival up to 36 weeks in the group that received the higher oxygenation level. This was published in the New England Journal of Medicine. Recommendations on the best range of oxygen saturation await a full 2 years of follow-up and the NeOProM study analysis.

Lisa Askie, investigator for neonatal studies and head of the CTC’s systematic reviews and health technology assessment group

For decades, the optimum range of oxygenation was, and remains to this day, unknown. Unfortunately, the uncertainty continues and the question of what is the optimal oxygen saturation range for preterm infants is a moving target. …

The oxygen story highlights the potential for unanticipated, adverse consequences when clinical practices are changed only on the basis of anecdotal, observational and nonrandomised evidence.

— Lisa Askie, Current Opinion in Pediatrics

William Tarnow-Mordi (foreground), investigator for BOOST II with Alpana Ghadge, manager of BOOST II
Australian Placental Transfusion Study (APTS)

APTS is an open multicentre CTC trial which will eventually have 1600 participants—babies born more than 10 weeks early. It will determine whether a 60-second delay in clamping and cutting the cord can improve the baby’s blood flow to the brain and gut, reduce the need for donor blood, and reduce rates of infection, retinopathy, poor growth, death and disability in babies born more than 10 weeks early.

Lactoferrin Infant Feeding Trial (LIFT)

Does lactoferrin reduce mortality and morbidity in very low birth weight infants?

Exciting recent evidence suggests that bovine lactoferrin, an inexpensive antimicrobial, antioxidant, anti-inflammatory dairy protein, substantially reduces sepsis, extending the benefits of probiotics.

LIFT brings together an international research team and parents committed to clinical trials to improve survival without disability in newborn babies. A cost-effectiveness analysis is also planned to capture completely the potential cost-effectiveness and societal benefits of lactoferrin in preventing major morbidity.

LIFT is an investigator-initiated trial, funded by NHMRC, which has established a new partnership with the internationally respected Vermont Oxford Network, USA.

INTERNATIONAL NEONATAL IMMUNOTHERAPY STUDY (INIS)

The CTC’s first trial in neonatal medicine was INIS, conceived in the late 1990s, started in 2001, and over 6 years recruiting nearly 3500 infants from 9 countries.

INIS was a trial of polyvalent IgG immunoglobulin added to antibiotic therapy for newborn infants with serious infection. This was then a standard regimen for preventing later death and disability, a consequence of infection.

The trial showed that the additional immunoglobulin did not make a difference, evidence that is saving babies from an ineffective treatment and also saving its substantial cost.
Health economics

The economic impacts of ill-health can extend beyond the health system to affect family incomes, welfare payments, taxation revenue and special education.

Potential to save costs beyond the health system

The health economics group is collaborating on the LIFT neonatal trial (p. 22). The economic evaluation includes developing a model of the relationship between improved cognitive outcomes in childhood and educational attainment.

CTC MAX colorectal cancer trial

Economic evaluations are an important part of assessments of new treatments and technologies; they must be shown to be value for money as well as effective. This is especially important for cancer treatments, where costs have been rising dramatically.

In Australia the cost per prescription has quadrupled in the past decade while expenditure by the Pharmaceutical Benefits Scheme has increased even more. It is important that trials of new cancer drugs incorporate cost-effectiveness analyses to inform governments and other bodies making decisions about reimbursement.

In the AGITG MAX trial of combined treatment for advanced colorectal cancer (p. 9), data were collected during the trial for a study determining the cost effectiveness of adding a monoclonal antibody, bevacizumab, to chemotherapy. This was the first study to collect patient data as part of a prospectively designed economic study built into a phase III trial. Costs were analysed in relation to survival and quality of life. The regimen was found to be excessively expensive in proportion to its benefit. This lack of cost-effectiveness could change if new biomarkers for treatment benefit allow targeted treatment.

Costs and quality-of-life impacts of prostate cancer screening in Australia

Screening the general population or people without symptoms for cancer adds to health costs but is generally not worthwhile and may even be harmful. But for people at high risk, the trade-off between the potential benefits, harms and financial costs may favour testing.

For example, a recently published study looked at prostate cancer screening in Australia. The current test used is a prostate-specific antigen (PSA) blood test, followed by more tests and possibly surgery if the test is positive. The costs of testing and treatment are high, especially when multiplied by the many middle-aged men who would be tested with universal screening. CTC statisticians and health economists developed a decision model to estimate the net benefit and cost of PSA screening versus no screening. They found that for the 1% of men who were at very high risk of prostate cancer, screening was cost-effective, but for others, the cost would be over $100,000 per quality-adjusted life year saved. What is needed now is a way of identifying each man’s level of risk.

Continued...
Health economics (continued)

Treatment of obesity

A randomised trial by the Boden Institute of Obesity, Nutrition, Exercise & Eating Disorders (BIONE) at the University of Sydney in collaboration with colleagues in the UK and Germany showed that referral to Weight Watchers produced greater weight loss, over 12 months, than attending a primary practitioner for a similar period.

BIONE researchers and CTC health economists recently undertook cost-effectiveness analyses of the two approaches to weight loss. The Weight Watchers program was found to be more cost-effective on several health economic measures, such as dollars per kilogram lost, even though it involved more visits and more travel. Outside the trial setting, the cost of such a commercial program would currently be borne by the individual, and in Australia, the cost of the primary practitioner would be covered by Medicare. The commercial program was cost-effective when modelled from the point of view of the health system.46

This analysis was extended in a model that extrapolated the trial data to project the outcomes for patients over a lifetime, finding that the commercial program continued to be more effective and less costly than primary care for improving the health of people who are overweight or obese.

HISTORICAL

AUSTRALIAN NEW ZEALAND CLINICAL TRIALS REGISTRY (ANZCTR)

Medical evidence can be distorted if results of clinical trials are published selectively. Nearly three decades ago, John Simes demonstrated this using the example of cancer trials to ‘illustrate an approach to reviewing the clinical trial literature, which is free from publication bias, and demonstrate the value and importance of an international registry of all clinical trials’.

In 1994 the CTC established a national registry of clinical trials in cancer, known as the NCTR, coordinated by Davina Ghersi, funded by the New South Wales Cancer Council, and affiliated with the Australian Cochrane Centre. The CTC’s registry group was then working with other groups, such as the Register of European Cancer Trials, the Register of UK Cancer Trials, and PDQ (Physician Data Query) in the USA, aspiring to make trial registration comprehensive and international. In the mid-1990s, information in the register was public, but distributed by newsletter. In 1998, the register passed 200 trial records, and in 1999 a website was set up.

In 2005, trial registration received a boost when the editors of many prestigious medical journals made prior registration mandatory for publication of results. The new Australian registry, with an Australia-wide advisory board, was established very quickly with funding from the NHMRC. It extended to all Australian research involving human participants and covered interventions such as pharmaceuticals, surgical procedures, preventive measures, lifestyle, devices, treatment strategies, rehabilitation strategies and complementary therapies. The Australian registry was one of the first to be recognised as a primary registry by the World Health Organisation.

Since 2005, the registry has continued to be developed by a team at the CTC, with ongoing funding from the NHMRC. By the end of 2013, 8,755 trials were registered and the registry website had advanced in ease of use and linkage with other registries. In September, the ANZCTR manager, Lisa Askie, was appointed as a member of the WHO International Clinical Trials Registry Platform advisory committee. The Australian registry is advancing and is well connected with international developments in trial registration, contributing to its original aims of universal registration of clinical trials.

Fergus Tai, Kylie Hunter and Henry Ko, of the Australian New Zealand Clinical Trials Registry
Combining evidence for better clinical care

The best unbiased evidence on a particular aspect of clinical care is generally found in results of a systematic review of available research results. Systematic reviews with meta-analysis of trial results also estimate the effects of treatment more precisely than their constituent trials and may have enough data to show whether treatment effects vary in different subgroups. Published systematic reviews assist clinicians in evidence-based decision making.

An improvement on basing a systematic review on trial results is to reanalyse the data in an individual-participant-data meta-analysis. Such analyses have some of the advantages of a single large trial: better statistical precision in the results, the ability to show effects in subgroups of participants, and secondary hypothesis testing.

In prospective meta-analyses, trial investigators cooperate, often across national borders, to design their trials with future combined analysis in mind. Designs are harmonised in terms of entry criteria, sample size calculations and the choice and definition of trial endpoints agreed to in the meta-analysis protocol, before any results are known.

CTC authors conduct systematic reviews and individual-patient-data meta-analyses for peer-reviewed journals in various topic areas, such as neonatal disorders, cardiovascular disease, cancer and trial methodology.

Systematic reviews for the Cochrane Collaboration

The Cochrane Library is a database that contains high-quality, independent evidence from systematic reviews on a range of clinical questions to inform healthcare decision-making. Its work is done by specialist groups around the world that prepare, maintain and peer-review these reviews, independent of commercial support. These reviews add value to trials already done by combining existing results and also take account of the quality of their methods and conduct, for example, by examining the risk of bias in each study.

The Cochrane Breast Cancer Group, which coordinates, edits and facilitates the publication of reviews on all aspects of breast cancer and recruits and trains new contributors, is based at the CTC. The group apply their content and methodological expertise to ensure that the protocol for conducting each review is rigorous and will lead to a comprehensive assessment of the current state of evidence.

In 2013, the group produced five new reviews—on chemotherapy, surgery, rehabilitation and detection of breast cancer—plus updates with new evidence of previously published reviews. They also facilitated the formulation of new protocols on aspects of surgery, radiotherapy, yoga and acupuncture.
New medical technology: how do we know that it is effective and affordable?

In Australia, medical procedures are mainly funded by taxpayers. Therefore, the government requires evidence that new procedures and technologies are worth paying for and will benefit patients. Decisions are made by the Minister for Health on the advice of the Medical Services Advisory Committee.

The health technology assessment team at the CTC undertakes systematic reviews of new procedures being proposed for public funding. These are major reports that aggregate and evaluate evidence for safety, effectiveness and cost-effectiveness.

Over the past twelve months, the health technology assessment team has performed a review of the clinical effectiveness of cervical cancer screening technologies for the National Cervical Screening Program Renewal and prepared assessments of the use of fiducial markers for radiotherapy in prostate cancer, cone beam computed tomography for dental imaging, and MRI screening for women at high risk of breast cancer.

Diagnostic testing as part of a clinical pathway that leads to the best outcome for the patient

Evaluation of diagnostic medical tests is different from trialling drugs and interventions in that a test does not affect health outcomes directly. Therefore, evaluation of tests has to include consideration of the doctors’ decisions and treatments that follow test results. The process as a whole must improve health, reduce costs or make health care delivery more efficient. Tests can only be justified if there is evidence of eventual benefit.

In the past decade, many advances have been made in test evaluation, much of it from the CTC. An example is development of a radiological sign distinguishing spinal stenosis from other causes of back pain. The concept, that nerve roots sink under gravity in the normal spine but do not move in the stenosed spine, was observed and shown to distinguish stenosis in 2010. The research group has now begun to examine the clinical pathway. They asked ‘Does the sign provide clinical information that can be used in treatment decisions and so improve health outcomes?’ in a study of 118 patients attending a hospital clinic for back pain. The results suggested that the sign could help in identifying patients who might benefit from decompression surgery. Recent studies have been validating the test, through examining the biological mechanisms of the effect in animals and in humans.

The CTC’s Sally Lord is a member of the Test Evaluation Working Group of the European Federation of Clinical Chemistry and Laboratory Medicine, which has been developing a framework that considers the whole clinical pathway after laboratory testing for disease biomarkers. This is a concern of funding bodies, which want to see a benefit from expensive laboratory tests, and patients, who may be harmed by overdiagnosis and overtesting.

A group at the CTC prepares assessments of new technologies for the Medical Services Advisory Committee of the Department of Health. Left to right: Samara Lewis, Henry Ko, Briony Jack and Elizabeth Seil.
Methodology

Biostatistical expertise applied to CTC trials and beyond

CTC biostatisticians are responsible for design, data analysis and validation of the analysis of trials initiated and conducted by the CTC and its collaborative groups. They also travel to various hospitals and universities in Sydney and elsewhere in Australia to take part in research studies in diverse clinical fields: Indigenous health, gynaecology, pregnancy and birth, cancers, radiology, psychiatry, heart disease, nutrition and health service delivery. Over 50 such studies were published during 2013.

Urogynecology

Statisticians have collaborated with a group at the University of Western Sydney examining the demographic associations with and physical causes of perineal tearing during childbirth. They analysed data from over half a million births in New South Wales. Severe tearing often requires later surgical attention. It occurs during nearly 2% of Australian births, a rate that is increasing, especially in male births.¹³

Psychiatry

Psychiatrists at Nepean Hospital in Sydney have been investigating obsessive-compulsive disorders in several studies.¹¹⁻¹⁴ Statistical methods have been used to classify various manifestations of this disorder and to create models relating thoughts to symptoms.¹³ Factor analysis has been used to distinguish taboo thoughts from other kinds of obsessive-compulsive disorders and to identify other characteristics, such as substance abuse and hostility, that are associated with taboo thoughts.¹²

Emergency services

The Head Injury Retrieval Trial is comparing care by a team that includes a doctor trained in emergency care with standard paramedic care for people rescued from accidents by helicopter. People with head injury often suffer from lack of oxygen and blood loss, and medical practitioners are able to provide more advanced procedures than paramedics. The CTC is working with Careflight on the study of cases from the Ambulance Service of New South Wales. The study design has to allow for the many individual factors that characterise serious accidents and injuries.⁴⁸

CTC biostatisticians have collaborated with emergency staff at Royal Prince Alfred Hospital, Sydney, on several studies of service delivery. They compared vital sign assessments at the scene of the injury and in the emergency department, with the aim of improving triage systems.³⁷ Triage of trauma patients at the site of injury by ambulance services is essential to ensure that patients who need it go to trauma centres but less critically injured patients do not overload specialist hospital systems. They have also used statistical modelling to predict risk in injured patients³⁵ and have analysed the costs of injury, particularly in elderly patients.³⁶
A BETTER RANDOMISATION METHOD

One of the first new methods developed by the CTC biostatistics group, in the early 1990s, was dynamic balancing, an improvement on then current ways of randomising patients to trials. The method resolved the disadvantages of selection bias and imbalance in the treatment arms. The CTC author group said that:

‘imbalances in the numbers of patients receiving each treatment within individual subgroups can result in confounding bias. …Dynamic balancing is an intuitively simple, easily implemented scheme for use in centrally randomised trials. The method provides the trial coordinator with a greater degree of control over imbalances at all levels of stratification.’

— Signorini et al. Statistics in Medicine, 1993

Methodological research

Research on ways to improve the design and conduct of clinical trials has always been central to the CTC’s activities. This includes incorporating quality-of-life and cost-effectiveness studies into the design of trials and biostatistical studies that critically analyse current methods and propose new ones.

Statistics-based guidance for systematic reviewers

When the benefit of a trial treatment becomes apparent early, and this is confirmed by statistical analysis, the trial may be stopped early. There are standard statistical procedures for this. But these calculations may overestimate the benefit of the treatment. When the results are combined with other trials in a systematic review, such overestimation might influence the combined evidence. Whether truncated trials should be included in systematic reviews and meta-analyses has been widely debated. CTC biostatisticians Manjula Schou and Ian Marschner undertook a mathematical analysis of data from 515 trials, considering possible estimation bias and also the effect of information weights used to aggregate the estimates in meta-analyses. Finding that the combined evidence was not biased by data from truncated trials, they concluded that early stopping of clinical trials due to treatment benefit was not an important source of bias and recommended that systematic reviewers continue to include all trials in their calculations.
Multistate survival models in clinical trials

Survival of a trial patient without having the disease outcome is good for the patient, but causes challenges in time-to-event statistical analyses. A new method extrapolates information on events during a trial to predict possible later events. Biostatisticians used data from the LIpID study to demonstrate the method, which estimates the hazard ratio, overall survival and the benefit of treatment. Ongoing long-term follow-up of LIpID patients for many years after the end of the trial will provide an opportunity for later validation of this method.
Masters degree in clinical trials research

As part of its education and training activities to improve the quality and scope of randomised trials in Australia, the CTC developed a postgraduate program in clinical trials research. Courses have been offered by Sydney Medical School since 2011.

The program leads to formal qualifications from the University of Sydney in the design, conduct and interpretation of clinical trials.

The first students graduated in 2013, nine with a Master of Clinical Trials (Research) and two with a graduate diploma.

The program is coordinated by Adrienne Kirby, with directors Anthony Keech and Val Gebski, and is a major teaching commitment for many of the CTC’s academic staff.

Biostatistics Collaboration of Australia

The BCA is currently a consortium of seven universities providing a well-defined path for the training of senior biostatisticians for clinical research.

In 2013, there were 282 active students at the semester 2 census date. The BCA convened an external curriculum review to assess the relevance, completeness and standards of its current curriculum and recommend any changes. The reviewers interviewed former and current students, employers and potential employers, and representatives of industry and academia.

CTC biostatisticians are active in teaching and coordinating BCA courses. In 2013, Rachel O’Connell coordinated ‘Advanced clinical trials’. Elizabeth Barnes and Lucy Davies coordinated ‘Principles of statistical inference’.
Collaborations

The CTC works with organisations around the world in collaborations that lead to better health outcomes in Australia and internationally. New collaborations are continually sought and then consolidated in research projects benefiting the health of Australians and others.

<table>
<thead>
<tr>
<th>GROUP</th>
<th>NATURE OF GROUP</th>
<th>CTC ACTIVITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australasian Gastro-Intestinal Trials Group (AGITG)</td>
<td>Collaborative group for gastrointestinal cancer trials: Australia, New Zealand</td>
<td>Coordinating centre and collaborator</td>
</tr>
<tr>
<td></td>
<td>International collaborations: Cancer Clinical Trials Unit Scotland (CACTUS), Eastern Cooperative Oncology Group (ECOG), European Organisation for Research and Treatment of Cancer (EORTC), European Study Group for Pancreatic Cancer (ESPAC), Groupe Coopérateur Multidisciplinaire en Oncologie (GERCOR), National Cancer Centre, Singapore, National Cancer Institute of Canada Clinical Trials Group (NCIC CTG), National Surgical Adjuvant Breast and Bowel Project (NSABP), Medical Research Council (MRC), Oxford Clinical Trials Office, Oxford University (OCTO), Pan-European Trials in Alimentary Tract Cancer (PETACC)</td>
<td></td>
</tr>
<tr>
<td>Australasian Lung Cancer Trials Group (ALTG)</td>
<td>Collaborative group for lung cancer trials: Australia, New Zealand</td>
<td>Coordinating centre and collaborator</td>
</tr>
<tr>
<td></td>
<td>International collaborations: NVALT (Netherlands), NCIC CTG (Canada)</td>
<td></td>
</tr>
<tr>
<td>Australasian Society of Thrombosis and Haemostasis</td>
<td>Professional group undertaking thrombosis trials: Australia, New Zealand</td>
<td>Coordinating centre and collaborator</td>
</tr>
<tr>
<td>Australia New Zealand Gynaecological Oncology Group (ANZOG)</td>
<td>Collaborative group for gynaecological cancer trials: Australia, New Zealand</td>
<td>Coordinating centre and collaborator</td>
</tr>
<tr>
<td></td>
<td>International collaborations: Dutch Gynaecologic Oncology Group (DGOG), Group d’Investigateurs Nationaux pour l’Etude des Cancers Ovariens (GINECO), Gynecological Cancer Intergroup (GCI), International Gynecological Cancer Intergroup (ICGCI), Gynecologic Oncology Group (GOG), Medical Research Council (MRC), Scottish Gynaecologic Cancer Trials Group (SGCTG)</td>
<td></td>
</tr>
<tr>
<td>Australian and New Zealand Urological and Prostate Clinical Trials Group (ANZUP)</td>
<td>Collaborative group for cancer of the genitourinary system: Australia, New Zealand. International collaborations: Cancer Research UK (CRUK), European Organisation for Research and Treatment of Cancer (EORTC), Groupe Coopérateur Multidisciplinaire en Oncologie (GERCOR), Institute of Cancer Research (ICR), National Cancer Research Institute (NCRI), Swedish & Norwegian Testicular Cancer Project (SWENOTECA), and Wales Cancer Trials Unit (WCTU)</td>
<td>Coordinating centre and collaborator</td>
</tr>
<tr>
<td>Australian New Zealand Breast Cancer Trials Group (ANZ BCTG)</td>
<td>Collaborative group for breast cancer trials: Australia, New Zealand</td>
<td>Coordinating centre and collaborator</td>
</tr>
<tr>
<td></td>
<td>International collaborations: International Breast Cancer Study Group (IBCSG), Breast International Group (BIG), International Breast Cancer Intervention Study (IBIS)</td>
<td></td>
</tr>
<tr>
<td>Australian New Zealand Clinical Trials Registry (ANZCTR)</td>
<td>National register of clinical trials: Australia, New Zealand and international</td>
<td>Coordinating centre</td>
</tr>
<tr>
<td>Biostatistics Collaboration of Australia</td>
<td>Universities undertaking postgraduate education in biostatistics: Australia</td>
<td>Coordinating centre</td>
</tr>
<tr>
<td>Cholesterol Treatment Trials’ Collaboration (CTTC)</td>
<td>Investigators of cholesterol treatment trials: Australia, New Zealand, United Kingdom, United States, Italy</td>
<td>Coordinating centre</td>
</tr>
<tr>
<td>Boden Institute of Obesity, Nutrition, Exercise & Eating Disorders,</td>
<td>Research institution: Australia</td>
<td>Collaborator</td>
</tr>
<tr>
<td>GROUP</td>
<td>NATURE OF GROUP</td>
<td>CTC ACTIVITY</td>
</tr>
<tr>
<td>-------</td>
<td>----------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Clinical Trial Development Unit (CTDU)</td>
<td>Partnership with the Centre for Biostatistics and Clinical Trials, Peter MacCallum Cancer Institute: Australia</td>
<td>Trial operation and statistical support for cancer trials</td>
</tr>
<tr>
<td>Cochrane Collaboration Breast Cancer Group</td>
<td>Collaborative group undertaking systematic reviews of trial evidence: international</td>
<td>Editorial base</td>
</tr>
<tr>
<td>Cochrane Prospective Meta-Analysis Methods Group</td>
<td>Collaborative group undertaking systematic reviews of trial evidence: international</td>
<td>Coordinating centre</td>
</tr>
<tr>
<td>Cooperative Trials Group for Neuro-Oncology (COGNo)</td>
<td>Collaborative group for brain cancer trials: Australia</td>
<td>Coordinating centre and collaborator</td>
</tr>
<tr>
<td>Early Prevention of Obesity in Children (EPOC) cooperation</td>
<td>Prospective meta-analysis collaboration: international</td>
<td>Data coordination centre</td>
</tr>
<tr>
<td>Fenofibrate and Event-Lowering in Diabetes (FIELD) Study Investigators</td>
<td>Collaborative group for FIELD diabetes trial genetic, molecular and follow-up substudies: Australia, New Zealand, Finland, Germany</td>
<td>Coordinating centre</td>
</tr>
<tr>
<td>Heart Foundation</td>
<td>Nongovernment organisation: Australia</td>
<td>Cardiovascular research</td>
</tr>
<tr>
<td>INSPIRE</td>
<td>Meta-analysis: ASPIRE and WARSFA (Italy)</td>
<td>Member</td>
</tr>
<tr>
<td>International Neonatal ImmunoTherapy Study (INIS) Study Group</td>
<td>Collaborative group for INIS trial: Australia, New Zealand, Europe, Argentina</td>
<td>Regional coordinating centre</td>
</tr>
<tr>
<td>Long-term Intervention with Prazosin in Ischaemic Disease (LIPID) Study Group</td>
<td>Collaborative group for LIPID cholesterol-lowering trial genetic, molecular and follow-up substudies: Australia, New Zealand, Germany</td>
<td>Coordinating centre</td>
</tr>
<tr>
<td>Medical Services Advisory Committee (MSAC) and Department of Health and Ageing</td>
<td>Government: Australia</td>
<td>Assessments of new technologies and other research services</td>
</tr>
<tr>
<td>Menzies Research Institute and Charles Darwin University</td>
<td>Research institution: Australia</td>
<td>Collaborator</td>
</tr>
<tr>
<td>Meta-analysis collaboration (AMICABLE)</td>
<td>Meta-analysis collaboration: international</td>
<td>Collaborator</td>
</tr>
<tr>
<td>Meta-Analysis of Preterm Patients on Inhaled Nitric Oxide (MAPINNO) collaboration</td>
<td>Meta-analysis collaboration: international</td>
<td>Data coordination centre</td>
</tr>
<tr>
<td>National Perinatal Epidemiology Unit (NPEU), University of Oxford</td>
<td>Research institution: UK</td>
<td>Collaborator on the INIS neonatal trial</td>
</tr>
<tr>
<td>Neonatal Oxygenation Prospective Meta-analysis (NeoOPM) collaboration</td>
<td>Prospective meta-analysis collaboration: international</td>
<td>Coordinating centre</td>
</tr>
<tr>
<td>NSW Cancer Council</td>
<td>Cancer Epidemiology Research Unit</td>
<td>Collaborator</td>
</tr>
<tr>
<td>Perinatal Antiplatelet Review of International Studies (PHARIS) collaboration</td>
<td>Meta-analysis collaboration: international</td>
<td>Co-coordinating centre</td>
</tr>
<tr>
<td>Prenatal oral corticosteroid international individual-patient-data study group: assessing the effects using the best level of evidence (PRECIE) collaboration</td>
<td>Meta-analysis collaboration: international</td>
<td>Collaborator</td>
</tr>
<tr>
<td>Prevention of Ventilator Induced Lung Injury collaborative study group (PreVIILIG)</td>
<td>Meta-analysis collaboration: international</td>
<td>Data coordination centre</td>
</tr>
<tr>
<td>Primary Care Cancer Trials Group (PC4)</td>
<td>Collaborative group: Australia</td>
<td>Collaborator</td>
</tr>
<tr>
<td>Primary Coronary Angioplasty versus Thrombolysis (PCAT)</td>
<td>Meta-analysis collaboration: international</td>
<td>Co-coordinating centre</td>
</tr>
</tbody>
</table>
Collaborations

<table>
<thead>
<tr>
<th>GROUP</th>
<th>NATURE OF GROUP</th>
<th>CTC ACTIVITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prospective Pravastatin Pooling (PPP) project</td>
<td>Collaborative group: international</td>
<td>Coordinating centre</td>
</tr>
<tr>
<td>RNA-based Analysis for Prediction of Islet Death (RAPID)</td>
<td>Collaborative group: Australia</td>
<td>Collaborator</td>
</tr>
<tr>
<td>REMOVAL trial group</td>
<td>Collaborative group: international</td>
<td>Coordinating centre and collaborator</td>
</tr>
<tr>
<td>Royal Australasian College of Surgeons (RACS)</td>
<td>Professional society undertaking trials of surgery: Australia and New Zealand</td>
<td>Coordinating the SNAC trials in breast cancer with the RACS</td>
</tr>
<tr>
<td>Sydney Catalyst</td>
<td>Consortium for translational research in cancer</td>
<td>Collaborator</td>
</tr>
<tr>
<td>Trans-Tasman Radiation Oncology Group (TROG)</td>
<td>Collaborative group: Australia and New Zealand</td>
<td>Collaborator</td>
</tr>
<tr>
<td>T4DM trial group</td>
<td>Collaborative group: Australia</td>
<td>Coordinating centre and collaborator</td>
</tr>
<tr>
<td>Star Child Health</td>
<td>Meta-analysis collaboration: international</td>
<td>Member</td>
</tr>
<tr>
<td>University of Melbourne Department of Medicine</td>
<td>Research institution: Australia</td>
<td>Collaborator on diabetes studies</td>
</tr>
<tr>
<td>WINNER Centre for Newborn Research</td>
<td>Collaboration for international neonatal trials: Australia</td>
<td>Collaborator</td>
</tr>
</tbody>
</table>

Funding

<table>
<thead>
<tr>
<th>FUNDER</th>
<th>Amount (AUD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>National Health and Medical Research Council</td>
<td>7,105,094</td>
</tr>
<tr>
<td>Australian Research Council</td>
<td>220,202</td>
</tr>
<tr>
<td>Cancer Australia</td>
<td>3,526,895</td>
</tr>
<tr>
<td>Cancer Council</td>
<td>316,101</td>
</tr>
<tr>
<td>Cancer Institute New South Wales</td>
<td>2,084,412</td>
</tr>
<tr>
<td>Collaborative investigator groups</td>
<td>34,652</td>
</tr>
<tr>
<td>Other research grants</td>
<td>2,046,277</td>
</tr>
<tr>
<td>Overseas research grants</td>
<td>1,605,594</td>
</tr>
<tr>
<td>Other Australian public funding</td>
<td>1,753,451</td>
</tr>
<tr>
<td>Research infrastructure grants</td>
<td>2,260,027</td>
</tr>
<tr>
<td>Pharmaceutical industry, primarily for trials</td>
<td>2,798,621</td>
</tr>
<tr>
<td>Consulting</td>
<td>422,622</td>
</tr>
<tr>
<td>Student Fees</td>
<td>141,832</td>
</tr>
<tr>
<td>Other</td>
<td>966,101</td>
</tr>
<tr>
<td>Total</td>
<td>24,781,881</td>
</tr>
</tbody>
</table>

- National Health and Medical Research Council
- Cancer Australia, Cancer Institute NSW and Cancer Council
- Other public funding
- Overseas research grants
- Pharmaceutical industry
- Other
Current CTC trials

NEONATAL DISORDERS

<table>
<thead>
<tr>
<th>Trial in start-up</th>
<th>Participants</th>
<th>Target</th>
<th>Accrual</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIFT: Lactoferrin infant feeding trial</td>
<td>Infants born weighing under 1500 g</td>
<td>1100</td>
<td>–</td>
</tr>
<tr>
<td>APTS: Australian placental transfusion study</td>
<td>Neonates born before 30 weeks’ gestation</td>
<td>1600</td>
<td>657</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Current trials</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ApTS: Australian placental transfusion study</td>
<td>Neonates born before 30 weeks’ gestation</td>
</tr>
<tr>
<td>BooST II: Benefits of oxygen saturation targeting</td>
<td>Neonates born before 28 weeks’ gestation</td>
</tr>
</tbody>
</table>

CARDIOVASCULAR AND DIABETES

<table>
<thead>
<tr>
<th>Trial in start-up</th>
<th>Participants</th>
<th>Target</th>
<th>Accrual</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAME1-EYE: Fenofibrate and microvascular events in type 1 diabetes</td>
<td>Adults with type 1 diabetes and some thickening of the macula of the eye</td>
<td>450</td>
<td>–</td>
</tr>
<tr>
<td>REMOVAL: Effects of metformin added to insulin on atheroma progression</td>
<td>Adults with type 1 diabetes at risk of cardiovascular disease</td>
<td>90 (ANZ): 500 (international)</td>
<td>52 (ANZ): 441 (international)</td>
</tr>
<tr>
<td>T4DM: efficacy of adding testosterone to a lifestyle program to prevent progression to type 2 diabetes</td>
<td>Men with prediabetes and low testosterone</td>
<td>1500</td>
<td>109</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Current trials</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>FAME1-EYE: Fenofibrate and microvascular events in type 1 diabetes</td>
<td>Adults with type 1 diabetes and some thickening of the macula of the eye</td>
</tr>
<tr>
<td>REMOVAL: Effects of metformin added to insulin on atheroma progression</td>
<td>Adults with type 1 diabetes at risk of cardiovascular disease</td>
</tr>
<tr>
<td>T4DM: efficacy of adding testosterone to a lifestyle program to prevent progression to type 2 diabetes</td>
<td>Men with prediabetes and low testosterone</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Trials in follow-up</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>FIELD: Fenofibrate intervention and event lowering in diabetes</td>
<td>Patients with type 2 diabetes</td>
</tr>
<tr>
<td>LIpID: Long-term intervention with pravastatin in ischaemic disease</td>
<td>Patients with a history of coronary heart disease</td>
</tr>
</tbody>
</table>

ONCOLOGY PROGNOSIS STUDY

<table>
<thead>
<tr>
<th>Current trials</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>iTool: Evaluating a web-based tool for estimating and explaining prognosis</td>
<td>Patients with incurable cancer who attend clinics of participating oncologists and who want information about life expectancy</td>
</tr>
<tr>
<td>TRIAL</td>
<td>PARTICIPANTS</td>
</tr>
<tr>
<td>-------</td>
<td>--------------</td>
</tr>
<tr>
<td>BREAST CANCER (COLLABORATING WITH RACS)</td>
<td></td>
</tr>
<tr>
<td>Current trials</td>
<td></td>
</tr>
<tr>
<td>SNAC 2: Sentinel node biopsy versus axillary clearance RACS and CTC study</td>
<td>Women with operable breast cancer, stratified by factors including age and tumour size</td>
</tr>
<tr>
<td>Trials in follow-up</td>
<td></td>
</tr>
<tr>
<td>SNAC 1: Sentinel node biopsy versus axillary clearance RACS and CTC study</td>
<td>Women with a single operable breast tumour <3 cm, stratified by factors including age and tumour size</td>
</tr>
<tr>
<td>GASTROINTESTINAL CANCER (COLLABORATING WITH AGITG)</td>
<td></td>
</tr>
<tr>
<td>Trials in start-up</td>
<td></td>
</tr>
<tr>
<td>ASCOLT: Aspirin for Dukes C and high-risk Dukes B colorectal cancers National Cancer Institute (Singapore)-led, AGITG and CTC study</td>
<td>Patients with colorectal cancer who have completed surgery and other treatment</td>
</tr>
<tr>
<td>Current trials</td>
<td></td>
</tr>
<tr>
<td>A La CART: Australian phase III randomised trial of laparoscopy-assisted resection compared with open resection AGITG and CTC study</td>
<td>Patients with primary rectal cancer</td>
</tr>
<tr>
<td>CO 23: BBR166 and supportive care compared with placebo and supportive care for colorectal carcinoma NCIC-CTG-led AGITG and CTC study</td>
<td>Patients with advanced colorectal carcinoma</td>
</tr>
<tr>
<td>DOCTOR: Phase 2 trial of preoperative cisplatin, 5-fluorouracil and docetaxel with or without radiotherapy for oesophageal cancer AGITG and CTC</td>
<td>Patients with resectable adenocarcinoma of the oesophagus not responsive to chemotherapy</td>
</tr>
<tr>
<td>GAP: Phase 2 study of gemcitabine and Nab-paclitaxel AGITG and CTC</td>
<td>Patients with resectable pancreas cancer</td>
</tr>
<tr>
<td>ICECREAM: Irinotecan cetuximab evaluation and cetuximab response evaluation among mutants AGITG- and CTC-led international study</td>
<td>Patients with Kras-WT metastatic colorectal carcinoma or a G13D mutation</td>
</tr>
<tr>
<td>IMPACT: Phase 2 trial using genomic sequencing and protein expression to direct first-line treatment Geman, AGITG and CTC</td>
<td>Patients with metastatic pancreatic cancer</td>
</tr>
<tr>
<td>INTEGRATE: Phase 2 trial comparing regorafenib and placebo AGITG and CTC-led international</td>
<td>Patients with advanced oesophagogastric cancer</td>
</tr>
<tr>
<td>SCOT: Short-course oncology therapy, a study of adjuvant chemotherapy in colorectal cancer MRC-led, AGITG and CTC</td>
<td>Patients with fully resected stage III colorectal cancer</td>
</tr>
<tr>
<td>TOPGEAR: Randomised phase II-III trial of preoperative chemoradiotherapy versus preoperative chemotherapy for gastric cancer AGITG- and CTC-led international study</td>
<td>Patients with resectable gastric cancer suitable for these treatments</td>
</tr>
</tbody>
</table>
Trials in follow-up

<table>
<thead>
<tr>
<th>TRIAL</th>
<th>PARTICIPANTS</th>
<th>TARGET</th>
<th>ACCRUAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adjuvant GIST: Adjuvant imatinib mesylate versus no further therapy after complete surgery (AG0403, EORTC 62024)</td>
<td>Patients with resected gastrointestinal stromal tumours (GIST) expressing KIT receptor</td>
<td>80 (ANZ)</td>
<td>81 (ANZ); 908 (international)</td>
</tr>
<tr>
<td>Advanced GIST: Relation between dose and clinical activity of imatinib mesylate (AG0102, EORTC 62005)</td>
<td>Patients with unresectable or metastatic malignant gastrointestinal stromal tumours (GIST) expressing KIT receptor</td>
<td>80 (ANZ); 600 (international)</td>
<td>116 (ANZ); 946 (international)</td>
</tr>
<tr>
<td>ATTACHE: Timing of surgery and adjuvant chemotherapy for hepatic colorectal metastases</td>
<td>Patients with confirmed resectable liver metastases and no other disease</td>
<td>200</td>
<td>9</td>
</tr>
<tr>
<td>EORTC liver metastases: Oxaliplatin, 5-fluorouracil and leucovorin versus surgery for resectable colorectal cancer liver metastases (EORTC 40903)</td>
<td>Patients with colorectal cancer with resectable liver metastases</td>
<td>330 (international)</td>
<td>35 (ANZ); 364 (international)</td>
</tr>
<tr>
<td>LAP07: Randomised multicentre phase III study of gemcitabine with or without chemoradiotherapy and with or without erlotinib</td>
<td>Patients with locally advanced adenocarcinoma of the pancreas</td>
<td>60 (ANZ); 900 (international)</td>
<td>32 (ANZ); 442 (international)</td>
</tr>
<tr>
<td>pEACC 6: Addition of capecitabine to preoperative oxaliplatin chemoradiotherapy and postoperative oxaliplatin chemotherapy for rectal cancer (AG0707R)</td>
<td>Patients with locally advanced rectal cancer</td>
<td>135 (ANZ); 1050 (international)</td>
<td>127 (ANZ); 1094 (international)</td>
</tr>
<tr>
<td>Quasar 2: Phase III study of capecitabine and bevacizumab as adjuvant treatment of colorectal cancer (AG0107CR)</td>
<td>Patients with colon cancer treated by surgery</td>
<td>120 (ANZ); 1892 (international)</td>
<td>219 (ANZ); 1952 (international)</td>
</tr>
<tr>
<td>REGISTER: Multicentre phase II study of risk evaluation in GIST with selective therapy escalation for response</td>
<td>Patients with gastrointestinal stromal tumour not suitable for curative surgery</td>
<td>80</td>
<td>47</td>
</tr>
<tr>
<td>TACTIC: Phase 2 trial of panitumumab, cisplatin and gemcitabine</td>
<td>Patients with biliary tract cancer</td>
<td>45</td>
<td>48</td>
</tr>
</tbody>
</table>

Gynaecological cancer (collaborating with ANZGOG)

Current trials

<table>
<thead>
<tr>
<th>TRIAL</th>
<th>PARTICIPANTS</th>
<th>TARGET</th>
<th>ACCRUAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICON 8: Dose-fractionated chemotherapy compared with 3-weekly chemotherapy for ovarian cancer</td>
<td>Women with ovarian, fallopian tube or primary peritoneal cancer</td>
<td>145 (ANZ); 1485 (international)</td>
<td>3 (ANZ); 794 (international)</td>
</tr>
<tr>
<td>ANZGOG-1103: Phase I-II BNC105P combination study</td>
<td>Women with partly platinum-sensitive ovarian cancer in first or second relapse</td>
<td>Phase 1: up to 24 (international)</td>
<td>15</td>
</tr>
<tr>
<td>TRIAL</td>
<td>PARTICIPANTS</td>
<td>TARGET</td>
<td>ACCRUAL</td>
</tr>
<tr>
<td>-------</td>
<td>--------------</td>
<td>--------</td>
<td>---------</td>
</tr>
<tr>
<td>Outback: Phase III trial of addition of adjuvant chemotherapy to standard chemoradiation as primary treatment for cervical cancer (ANZGoG-0902) ANZGoG- and CTC-led international study</td>
<td>Women with locally advanced cervical cancer</td>
<td>780 (international)</td>
<td>68 (ANZ); 195 (international)</td>
</tr>
<tr>
<td>PARAGON Phase II study of anastrozole in gynaecological cancers (ANZGoG-0903) ANZGoG- and CTC-led international study</td>
<td>Women with potentially hormone-responsive gynaecological cancers</td>
<td>350 (international)</td>
<td>175 (ANZ); 58 (international)</td>
</tr>
<tr>
<td>PORTEC 3: Chemoradiation and adjuvant chemotherapy compared with pelvic radiation alone in high-risk endometrial carcinoma DGOG-led, ANZGoG and CTC study</td>
<td>Women with advanced endometrial carcinoma</td>
<td>120 (ANZ); 670 (international)</td>
<td>121 (ANZ); 671 (international)</td>
</tr>
<tr>
<td>REZoLVE: Phase II study to evaluate the safety and potential palliative benefit of intraperitoneal bevacizumab ANZGoG and CTC study</td>
<td>Women with symptomatic ascites due to advanced chemotherapy-resistant ovarian cancer</td>
<td>16 (international)</td>
<td>1</td>
</tr>
<tr>
<td>Symptom benefit: Does palliative chemotherapy improve symptoms in women with recurrent ovarian cancer? (ANZGoG-0701) ANZGoG- and CTC-led international study</td>
<td>Women with platinum-resistant or refractory ovarian cancer</td>
<td>200 (ANZ); 800 (international)</td>
<td>126 (ANZ); 439 (international)</td>
</tr>
<tr>
<td>Trials in follow-up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CALYPSO GINECO-led, ANZGoG and CTC</td>
<td>Women with platinum sensitive relapsed ovarian cancer</td>
<td>974 (international)</td>
<td>71 (ANZ); 976 (international)</td>
</tr>
<tr>
<td>GOG182 GOG-led, ANZGoG and CTC</td>
<td>Women with advanced stage (FIGO III-IV) epithelial ovarian or primary peritoneal carcinoma</td>
<td>4200 (international)</td>
<td>184 (ANZ); 4312 (international)</td>
</tr>
<tr>
<td>GOG299 GOG-led, ANZGoG and CTC</td>
<td>Women at high risk of ovarian cancer</td>
<td>800 (international)</td>
<td>83 (ANZ); 800 (international)</td>
</tr>
<tr>
<td>ICON 6: Safety and efficacy of cediranib in combination with standard chemotherapy MRC-led, ANZGoG and CTC</td>
<td>Women with platinum-sensitive relapsed ovarian cancer</td>
<td>400 (international)</td>
<td>17 (ANZ); 486 (international)</td>
</tr>
<tr>
<td>ICON 7: Randomised trial of adding bevacizumab to standard chemotherapy MRC-led, ANZGoG and CTC</td>
<td>Women with epithelial ovarian cancer who had not received systemic antitumour therapy</td>
<td>1444 (international)</td>
<td>76 (ANZ); 1450 (international)</td>
</tr>
<tr>
<td>OVAR 16: Pazopanib versus placebo for ovarian cancer AGO-led, ANZGoG and CTC</td>
<td>Women without disease progression after chemotherapy for epithelial ovarian, fallopian tube, or primary peritoneal cancer</td>
<td>900 (international)</td>
<td>65 (ANZ); 940 (international)</td>
</tr>
<tr>
<td>SCoTRoC 4: Multicentre trial of carboplatin flat dosing vs intrapatient dose escalation in first-line chemotherapy SGCTG-led, ANZGoG and CTC</td>
<td>Women with ovarian, fallopian tube or peritoneal carcinoma who are unsuitable for platinum-taxane therapy</td>
<td>1300 (international)</td>
<td>64 (ANZ); 937 (international)</td>
</tr>
<tr>
<td>EORTC55041 Tarceva EORTC-led, ANZGoG and CTC</td>
<td>Women without disease progression after chemotherapy for epithelial ovarian, fallopian tube, or primary peritoneal cancer</td>
<td>830 (international)</td>
<td>41 (ANZ); 830 (international)</td>
</tr>
<tr>
<td>TRIPOD (ANZGoG-0601) ANZGoG and CTC</td>
<td>Women with optimally debulked stage III cancer of the ovary, peritoneum and fallopian tube</td>
<td>35-100 (international)</td>
<td>39</td>
</tr>
</tbody>
</table>
GENITOURINARY CANCER (COLLABORATING WITH ANZUP)

Trials in start-up

<table>
<thead>
<tr>
<th>Trial</th>
<th>Participants</th>
<th>Target</th>
<th>Accrual</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCG+MMC: Phase III trial of adding mitomycin C to BCG as adjuvant intravesical therapy for bladder cancer ANZUP and CTC study</td>
<td>Patients with high-risk, non-muscle-invasive bladder cancer</td>
<td>500</td>
<td>–</td>
</tr>
<tr>
<td>P38EP: Phase III trial of accelerated versus standard BEP (ANZUP 1302) ANZUP, ANZGOG and CTC study</td>
<td>Patients with intermediate and poor-risk metastatic germ-cell tumours</td>
<td>Phase 1: 90 (ANZ); 150 (international) Phase 2: 350</td>
<td>–</td>
</tr>
</tbody>
</table>

Trials in follow-up

<table>
<thead>
<tr>
<th>Trial</th>
<th>Participants</th>
<th>Target</th>
<th>Accrual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemotherapy: Cognitive function and treatment for testicular cancer (ANZGCTG 0306) ANZUP and CTC</td>
<td>Patients being treated and followed up for testicular cancer</td>
<td>154</td>
<td>151</td>
</tr>
<tr>
<td>Eversun: Phase II trial of everolimus alternating with sunitinib for renal cell carcinoma (ANZUp 0901) ANZUP and CTC</td>
<td>Patients starting first-line systemic therapy for advanced renal cell carcinoma</td>
<td>55</td>
<td>55</td>
</tr>
<tr>
<td>SORCE: Adjuvant sorafenib for renal cell carcinoma (RE 05) MRC-led, ANZUP and CTC</td>
<td>Patients with resected renal cell carcinoma at intermediate or high risk of relapse</td>
<td>250 (ANZ); 1656 (international)</td>
<td>1711</td>
</tr>
</tbody>
</table>

LUNG CANCER (COLLABORATING WITH ALTG)

Current trials

<table>
<thead>
<tr>
<th>Trial</th>
<th>Participants</th>
<th>Target</th>
<th>Accrual</th>
</tr>
</thead>
<tbody>
<tr>
<td>NITRO: phase III multicentre trial of adding nitroglycerine to first-line chemotherapy for advanced non-small-cell lung cancer (ALTG 06/003) ALTG and CTC</td>
<td>Patients with advanced non-small-cell lung cancer</td>
<td>500</td>
<td>350</td>
</tr>
</tbody>
</table>

Trials in follow-up

<table>
<thead>
<tr>
<th>Trial</th>
<th>Participants</th>
<th>Target</th>
<th>Accrual</th>
</tr>
</thead>
<tbody>
<tr>
<td>BR.26: Phase III trial of PF-804 in patients with incurable, non-small-cell lung cancer (ALTG 09/002) NCC-led, ALTG and CTC</td>
<td>Patients with stage IIIIB or IV non-small-cell lung cancer</td>
<td>180</td>
<td>88</td>
</tr>
<tr>
<td>B2P2M2: phase II trial of BNC105P as second-line chemotherapy for pleural mesothelioma (ALTG 09/004) ALTG and CTC</td>
<td>Patients with pleural mesothelioma which has progressed after pemetrexed and platinum chemotherapy</td>
<td>60</td>
<td>30</td>
</tr>
<tr>
<td>PACT in NSCLC: Preferences for adjuvant chemotherapy in non-small-cell lung cancer ALTG and CTC observational study</td>
<td>Patients, surgeons and oncologists</td>
<td>200</td>
<td>122</td>
</tr>
</tbody>
</table>

BRAIN CANCER (COLLABORATING WITH COGNO)

Current trials

<table>
<thead>
<tr>
<th>Trial</th>
<th>Participants</th>
<th>Target</th>
<th>Accrual</th>
</tr>
</thead>
<tbody>
<tr>
<td>CATNON: Phase III trial of concurrent and adjuvant temozolomide chemotherapy for anaplastic glioma (EORTC 26065-22054) EORTC-led, COGNO and CTC</td>
<td>Patients with non-1p/19q-deleted anaplastic glioma</td>
<td>100 (ANZ); 748 (international) 54 (ANZ); 542 (international)</td>
<td></td>
</tr>
</tbody>
</table>

Trials in follow-up

<table>
<thead>
<tr>
<th>Trial</th>
<th>Participants</th>
<th>Target</th>
<th>Accrual</th>
</tr>
</thead>
<tbody>
<tr>
<td>CABARET: Phase II study of cabazitaxel and bevacizumab in recurrent glioblastoma multiforme COGNO and CTC</td>
<td>Patients aged 18 years and over with recurrent grade IV glioma after radiotherapy and temozolomide chemotherapy</td>
<td>122 (part 1); 60 (part 2)</td>
<td>122 (part 1); 48 (part 2)</td>
</tr>
<tr>
<td>SEED: Self-reported evaluation of the adverse effects of denosumab COGNO and CTC</td>
<td>Patients with bone tumours or brain metastases or advanced cancer using steroids</td>
<td>50 patients; 50 caregivers</td>
<td>66 patients; 66 caregivers</td>
</tr>
</tbody>
</table>
Staff

CTC executive
R John Simes, BSc(Med)(hons), MB BS(hons), MD, SM, FRACP, director and senior principal research fellow
Anthony C Keech, MB BS, MSc, FRACP, FCSANZ, deputy director and principal research fellow
Wendy Hague, MB BS, MBA, PhD, director, clinical trials program, and senior research fellow
Kim Russell-Cooper, BA(hons), MBA, general manager

Executive support
Thalia Hambides, executive assistant to the director
Katie Doyle, executive assistant to the deputy director

Oncology trials
Martin R Stockler, MB BS(hons), MSc, FRACP, cancer trials co-director and professor

Oncology trials managers
Burcu Vachan, BScSc(hons), MPH, DipMan, oncology program manager
Sarah Chinchin, BSc(hons), MPH, operations associate program manager and mentor
Xanthi Coskinas, BHlthSc, GradDipHIM, MSc(ClinEpi), development associate oncology program manager, ANZUP
Kim Gillies BA(hons), MHlthServMgt, operations oncology associate program manager, ANZOG
Ann Livingstone, RN, MHlthServMgt, development associate oncology program manager, COGNO and ALTG
Julie Martin, BSc, GradDipHortSc, PhD, development associate oncology program manager, ANZOG
Danielle Miller, BSc(hons), MPH, associate oncology program manager, PC4, Sydney Catalyst research manager
Kate Sawkins, BAppSc(Phy)(hons), operations associate oncology program manager, COGNO and ALTG
Lucille Sebastian, BSc(hons), PhD, manager, special projects
Eric Tsobanis, BSc(hons), MBA, operations associate oncology program manager, AGITG and ALTG
Kate Wilson, BA, MPH, development associate oncology program manager, AGITG
Nicole Wong, RN, BN, BSc(hons), operations associate oncology program manager, AGITG

Oncology trials staff
Christine Aiken, BScSc, MHlthSc
Adedeja Aso, BBiomedSc
Lisa Bailey, BAppSc
Karen Bradken, BSc, MPH
Lesley Beasell, Bmgmt, DipEvents
Hannah Cahill, BAppSc, BA
Lily Caki, BA, MTeach
David Cannan, BSc(hons)
Kerrie Carlton, BAppSc, MSc, GradDipBioethics
John Flynn
Alyson France, BSc/BTeach, GradDipAppSc
Lara Hall
Meryn Hall, BSc
Ilka Kolodziej, BAppSc(hons), MPH
Joseph Levitt, RN
Oliver Martyn, BExPhys
Angus McDonald, BEd(SocSc)
Karen Miranda, BBiomedSc
Jenna Mitchell, BHS(hons), BBiomedSc
Nick Muljadi, BSc(hons)
Kate Roff, BSc(hons)
Beau Salwin, BSc, GradDipAppSc, MMEdSc
Shona Silverster, BSc, MMEdSc
Helen Taylor, BSc, PhD
Jennifer Thompson, Cert IV BusAdmin
Bernadette Tomes, BClInSc
Diana Winter, BMedSc

Oncology research fellows
Rasha Cosman, BSc(Med), MBBS, FRACP, clinical research fellow, ALTG and COGNO
Danielle Ferraro, MB BS (hons), FRACP, clinical research fellow, ALTG and AGITG
Belinda Kiely, BSc(Med), MB BS, PhD, FRACP, senior clinical research fellow
Chee K Lee, MB BS(hons), MMEdSc, MBiostat, PhD, FRACP, clinical lead
Anne Long, FRACP, BM BS, BSc(hons), clinical research fellow, ANZOG and ANZUP trials
Katrin M Sjoquist, BSc(Med), MB BS, MClmT(R), FRACP, clinical lead
Dirkje W Sommeijer, MD, PhD, clinical research fellow, AGITG and ANZOG
Sonia Yip, BSc(hons), PhD, oncology senior translational research fellow and manager

Cooperative Trials Group for Neuro-Oncology
Jenny Chow, AssocDip, executive officer
Yi Feng, administrative assistant, BE(aeronautical)(hons)
Hannah O’Riley, BSc(hons), administrative assistant

Karen Miranda, trial coordinator and monitor, oncology
Neonatal trials
William O Tarnow-Mordi, MRCP(UK), FRCPCH, coordinator of neonatal trials and head, WINNER Centre for Newborn Research

INIS and APTS trials
Lucille Sebastian, BSc(hons), PhD, project manager
Rebecca Brown, BSc(hons), clinical trials assistant
Caitlin van Holst Pellekaan, BMEdSc(hons), data manager

BOOST II trial
Alpana Ghadge, BSc, MSc, PhD, GradCert TrademarksLawPract, project manager

LIFT trial
Alpana Ghadge, BSc, MSc, PhD, GradCert TrademarksLawPract, project manager
Rebecca Brown, BSc(hons), clinical trial assistant

Cardiovascular trials
FIELD follow-up
Li Ping Li, BMed, GradCertDM, project manager
San Yip Chan, administrative assistant
Sandra Healey, BA(hons), GradDipFA, RN, substudy coordinator

ASPIRE
Rebecca Mister, BSc, MSc, project manager
Rebecca Brown, BSc(hons), clinical trial assistant
Caitlin van Holst Pellekaan, BMEdSc(hons), data manager–study monitor

LIPID follow-up
Helen Pater, BAppSc, project manager

Diabetes trials
REMOVAL
Helen Pater, BAppSc, project manager

T4DM
Karen Bracken, BEd, MPH, project manager
Caitlin van Holst Pellekaan, BMEdSc(hons), data manager–study monitor

Quality assurance
Phillipa Smith, BPharm(hons), MSc, head of quality assurance
Karen Wilkinson, DipTeach, BA, PostgradDip Psychol, MRQA, clinical trials auditor

Clinical data management
Mark Maclean, BA, DCR(T), CM, head
Salma Fahrudin, BAppSc(HIM), MHIhSc, clinical data coordinator
Liam Murphy, BSc, clinical data coordinator
Michelle M Parry, BSc, PhD, clinical data project manager
Lindsay Stevens, BSc, clinical data coordinator

Site management
Rebecca Mister, BSc, MSc, head

Diabetes molecular medicine and telehealth
Alicia J Jenkins, MB BS, MD, FRACP, FRCP, professor of diabetes and vascular medicine
Sven-Erik Bursell, PhD, professor of telehealth
Anandwardhan A Hardikar, BSc, MSc, PhD, associate professor, Australian Future Fellow (ARC)
Andrzej S Januszewski, MD, PhD, senior research fellow
Mugdha Joglekar, BSc, MSc, PhD, Juvenile Diabetes Research Foundation research fellow
Daniel Calandro, BSc, research assistant
Veronica Dy, PhD, clinical trial assistant
Thomas McCorquodale, BSc, clinical trial assistant
Sarang Satoor, BSc, MSc, research fellow

Systematic reviews and health technology assessment
Lisa M Askie, BN, MPH, PhD, director, and principal research fellow
Jenny Chow, AssocDip, executive officer
Henry CH Ko, BEng(Med)(hons), PhD, research fellow
Sally J Lord, MB BS, DipPaed, MS, FRACGP, epidemiologist and research fellow

Health technology assessment
Brony Jack, PhD, project manager
Samara Lewis, BA/BSc(hons), PhD, project manager
Elizabeth Sei, BA(hons), MSc-HTA, project officer
Anna Stoklosa, BA, MA, PhD, research fellow
Sally Worley, BHIhSc(hons), MPH, Grad Cert Hlth Econ, project officer

Cochrane breast cancer review group
Melina Willson, BSc (hons)/BA, PhD, managing editor
Fergus Tai, BAppSc, DipIT, MPH, trials search coordinator

Australian New Zealand Clinical Trials Registry
Kylie E Hunter, BA, BA(hons), project officer
William Y T Ooi, MHIhSc, BAppSc, project officer

In April, Jenny Chow received a Faculty of Medicine award for exceptional performance
Staff & Staff Activities

Health economics
Deborah J Schofield, BSpPath, GradDipComp, PhD, professor
Emily J Callander, BA, PhD, research fellow
Hannah Carter (Verry), BSc, health economist
Michelle Cunich, BSc, MSc, PhD, economist
Sharyn Lymer, BA, BPhys, MBiostat, PhD, research fellow
Rupendra N Shrestha, MSc, PhD, research fellow

Biostatistics and consulting
Val J Gebski, BA, MStat, professor and principal research fellow
Jodie Gonzalez-Jennings, administrative officer
H Malcolm Hudson, BSc(hons), PhD, honorary professor
Ian C Marschner, BSc(hons), PhD, professor

Senior biostatisticians
Karen Byth (Wilson), BSc(hons), MSc, PhD, DIC, CStat RSS, senior lecturer
Adrienne C Kirby, BSc(hons), MSc, senior lecturer
Andrew J Martin, BA, MA, GradDip, PhD, AStat, senior lecturer
Rachel L O’Connell, BMath, MMedStat, PhD, research fellow

Research fellow
Elizabeth H Barnes, BAppSc, MStat

Biostatisticsian
Luke Buzaen, BSc
Lucy Davies, BSc, MSc
Mark W Donohoe, BSc(hons)
David Espinoza, BSc(hons)
Emma Gibbs, BSc, MSc
Kirsty Mann, BScAgr(hons), MBiostat
Simone Marschner, BSc(hons), MSc
Anne-Sophie Veillard, BSc, MSc

Biostatistics Collaboration of Australia (BCA)
Enica Jebling, executive officer
Kew Flood, administrative officer

Information systems

Infrastructure
Dinh Tran, BMath, MCompSc, infrastructure manager
Asanka Perera, BSc, computer systems officer
Ha Le, BCST, desktop support officer
Ryan Sausa, BE, computer systems officer
Thuyen Vu, BSc, computer systems officer

Database administration
Anh Tai Nguyen, BMath, database administrator

Software development
Colin Sutton, BSc, MSc, IT systems development manager
Sethu Atkuri, BE, software engineer

Business administration
Kim Russell-Cooper, BA(hons), MBA, general manager
Lily Cakir, receptionist
Mira Mikulic, receptionist
Lia Sherwood, BBiomedSc, MSc, grants and contracts coordinator

Finance
Paul Smyth, BCom, CPA, finance manager
Agnes Ho, MPracAcc, CPA, finance officer
Maks Joseph, DipEd, finance officer
Carlos Sterling, BEng, MBA, finance officer

Human resources
Cynthia Carin, BEd(HRD), human resources and administration manager
Suzanne Everett, BSW, human resources and administration coordinator

Mark Maclean, head, clinical data management

Publications
Rhana Pike, BA, MA, GradCert, ELS, CMPP, senior publications officer

Research students
Daniel Calandro, BSc
Venu Chalasani, MB BS, FRACP
Ryan Farr, BSc, MPhil
Jordan Fulcher, BSc(Med), MB BS
Deme Karkinos, BSc, MB BS, FRACP
Kushwijn Rajamani, MB ChB
Ru-Dee Ting, MB BS, FRACP
Boris Waldman, BSc
Wilson Wong, BSc(hons)

Academic staff
Lisa M Askie, BN, MPH, PhD, associate professor and principal research fellow
Elizabeth H Barnes, BAppSc, MStat, research fellow
Karen Byth, BSc(hons), MSc, PhD, DIC, CStat RSS, senior lecturer
Emily J Callander, BA, PhD, research fellow
Hannah Carter (Verry), BSc, research associate
Michelle Cunich, BSc, PhD, economist
Val J Gebski, BA, MStat, professor and principal research fellow
Wendy Hague, MB BS, MBA, PhD, senior research fellow
Anandwardhan A Hardikar, BSc, MSc, PhD, associate professor and Australian Future Fellow (ARC)
Andrzej S Januszewski, MD, PhD, senior research fellow
Alicia J Jenkins, MB BS, MD, MRCGP, FRACP, FRCP, professor
Anthony C Keech, MB BS, MSc, FRACP, FCSANZ, principal research fellow and professor
Adrienne C Kirby, BSc(hons), MSc, senior lecturer
Henry Ko, BEng(Med)(hons), PhD, research fellow
Chee K Lee, MB BS(hons), MMEdSc, MBiostat, PhD, FRACP, senior research fellow
Sally (Sarah) J Lord, MB BS, DipPaed, MS, FRACGP, senior research fellow
Sharyn Lymer, BA, BPhys, MBiostat, PhD, research fellow
Ian C Marschner, BSc(hons), PhD, professor
Andrew J Martin, BA, MA, GradDip, PhD, AStat, senior lecturer
Rachel L O’Connell, BMath, MMedStat, PhD, senior research fellow
Deborah J Schofield, BSpPath, GradDipComp, PhD, professor

Mark Maclean, head, clinical data management

Publications
Rhana Pike, BA, MA, GradCert, ELS, CMPP, senior publications officer

Research students
Daniel Calandro, BSc
Venu Chalasani, MB BS, FRACP
Ryan Farr, BSc, MPhil
Jordan Fulcher, BSc(Med), MB BS
Deme Karkinos, BSc, MB BS, FRACP
Kushwijn Rajamani, MB ChB
Ru-Dee Ting, MB BS, FRACP
Boris Waldman, BSc
Wilson Wong, BSc(hons)

Academic staff
Lisa M Askie, BN, MPH, PhD, associate professor and principal research fellow
Elizabeth H Barnes, BAppSc, MStat, research fellow
Karen Byth, BSc(hons), MSc, PhD, DIC, CStat RSS, senior lecturer
Emily J Callander, BA, PhD, research fellow
Hannah Carter (Verry), BSc, research associate
Michelle Cunich, BSc, PhD, economist
Val J Gebski, BA, MStat, professor and principal research fellow
Wendy Hague, MB BS, MBA, PhD, senior research fellow
Anandwardhan A Hardikar, BSc, MSc, PhD, associate professor and Australian Future Fellow (ARC)
Andrzej S Januszewski, MD, PhD, senior research fellow
Alicia J Jenkins, MB BS, MD, MRCGP, FRACP, FRCP, professor
Anthony C Keech, MB BS, MSc, FRACP, FCSANZ, principal research fellow and professor
Adrienne C Kirby, BSc(hons), MSc, senior lecturer
Henry Ko, BEng(Med)(hons), PhD, research fellow
Chee K Lee, MB BS(hons), MMEdSc, MBiostat, PhD, FRACP, senior research fellow
Sally (Sarah) J Lord, MB BS, DipPaed, MS, FRACGP, senior research fellow
Sharyn Lymer, BA, BPhys, MBiostat, PhD, research fellow
Ian C Marschner, BSc(hons), PhD, professor
Andrew J Martin, BA, MA, GradDip, PhD, AStat, senior lecturer
Rachel L O’Connell, BMath, MMedStat, PhD, senior research fellow
Deborah J Schofield, BSpPath, GradDipComp, PhD, professor
Honorary associates of the CTC
Associate Professor Meera R Agar, COGNO scientific advisory committee
Dr Andrew Barbour, PI, DOCTOR and GAP trials (AGITG)
Dr Sally Baron-Hay, ANZOG gastroenterology and hepatology
Dr Andrew Berry, BOOST II trial safety and data monitoring committee chair
Dr Andrew Bienkin, PI, LAP07 trial (AGITG)
Dr Alex Boussioutas, Gastric trial (AGITG)
Dr Timothy Brighton, PI, ASpIRE and CTC trials (AGITG)
Dr Ian Campbell, PI, SNAC 2 trial
Professor Christopher Christo, AGITG management committee
Dr Yu Jo Chua, PI, PANCH trial (AGITG)
Professor Alun Coates, Biostatistics
Professor Forrester Cockburn, BOOST II trial safety and data monitoring committee
Ms Melinda Cruz, LIFT study
Dr Andrew Davidson, PI, NITRO trial (ALTG)
Associate Professor Ian D Davis, PI, SORCE trial and chair, ANZUP
Dr Andrew Dean, PI, ICON8 trial
Dr Jayesh Desai, PI, REGISTER trial (AGITG)
Professor Catherine D’Este, CABARET trial (CoGNo)
Dr Jonathan Fawcett, co-PI, ATTACHE trial, AGITG
Dr John Eikelboom, PI, TOP GEAR, Gastric trial (AGITG)
Dr Helen Liley, PACE trial
Dr Kerrie McDonald, COGNO scientific advisory committee
Ms Robyn Leonard, COGNO management committee
Dr Pei Ni Ding, Oncology
Dr Katherine Drummond, COGNO management committee
Dr John Eikelboom, co-PI, ASPIRE and PREDICT trials
Dr Jonathan Fawcett, co-PI, ATTACHE trial (AGITG)
Dr Kathryn Field, PI, CABARET trial (COGNO)
Ms Marcia Fleet, COGNO management committee
Dr Matthew Foote, COGNO management committee
Dr Michael Friedlander, ANZOG gastroenterology and hepatology
Dr Sanjeet Galle, Diabetes, Molecular Medicine and Telehealth
Professor Alexander Gallus, ASPIRE trial management committee
Dr Davina Gherzi, Australian New Zealand Clinical Trial Registry advisory committee and CTC adjunct professor
Professor P Grantley Gill, PI, SNAC trials
Dr David Goldstein, PI, LAP07 trial, co-PI, ATTACHE trial, AGITG board
Dr Andrew Haydon, PI, SCOT trial (AGITG)
Dr Sandra Hayes, ECHO study
Professor Dickson Hayne, PC4 trial, ANZUP
Dr Elizabeth Hovey, COGNO executive
Dr H Malcolm Hudson, Biostatistics
Monika Janda, COGNO scientific advisory committee
Dr Michael Jefford, SCOT trial (AGITG)
Dr Lindy Jeffree, COGNO scientific advisory committee
Dr Terrance Johns, COGNO management committee
Dr David Joseph, COGNO scientific advisory committee
Dr Andrew Kneebone, AGITG
Dr Eng-Siew Koh, CoGNo management committee
Dr Daniel Langbecker, CoGNo scientific advisory committee
Dr Dusan Kotasek, Adjuvant GIST study
Dr Danette Langbecker, CoGNo scientific advisory committee
Dr Helen Liley, pAEAN study
Dr Andrew Lipton, COGNO management committee
Dr Andrew Kneebone, PI, POL13 trial (AGITG)
Dr Trevor Leong, PI, TOP GEAR, Gastric trial (AGITG)
Dr Helen Liley, PACE trial
Dr Kerrie McDonald, COGNO scientific advisory committee
Dr Sue-Anne McLachlan, PACT in SCLC (ALTG)
Associate Professor Peter Meikle, LIPID and field studies
Dr Michael Michael, PI, TOP GEAR trial (AGITG)
Dr Linda Mileskian, ANZOG gastroenterology and hepatology
Dr Michael Michael, PI, TOP GEAR trial (AGITG)
Dr Nigel Mott, PI, CATNOM trial (COGNO)
Dr Robert Padbury, AGITG
Dr Nicholas J Petrelli, AGITG
Dr John Pockley, PI, pETACC6 trial (AGITG)
Dr Andrew P nast, PI, SCoT and ARCTIC trials (AGITG)
Dr Robert Padbury, AGITG
Dr Daniel Pichlmayr, PI, SCOT and ARCTIC trials (AGITG)
Dr Michael Pichlmayr, PI, SCOT and ARCTIC trials (AGITG)
Dr Paul Nguyen, PI, BR24 trial (ALTG)
Dr Allan Spigelman, Sydney Catalyst
Dr Nigel A Spry, PI, LAP07 trial (AGITG)
Dr Andrew R Stevenson, PI, A La CART (AGITG)
Associate Professor David Sullivan, LIPID and field trial committees
Dr Christopher Sweeney, ANZUP
Associate Professor Niall Tebbutt, PI, ATTAX, ATTAX2, ATTAX3 and MAX trials (AGITG)
Associate Professor Damien Thomson, co-PI, Aprepitant trial (ANZUP) and ANZUP germ-cell subcommittee
Dr Andrew Tankin, BiomarCare, LIPID study chair
Dr Paul Vasey, PI, SCOTROC4 trial (ANZOG)
Dr Michelle Vaughan, ANZOG gastroenterology, PI ICON6
Dr Evan Walpole, PI, SCOT trial (AGITG)
Dr Neil Wetzig, co-PI, SNAC trial
Dr Louise Wigston (Nott), CO23 trial (AGITG)
Professor Nicholas Wilden, ANZ BCTG
Dr Kathryn Williams, FIELD study
Professor Gary Wittett, PI, TJDM trial
Dr Desmond Yip, SCOT (AGITG)
Professor John Zalcberg, AGITG chair
Staff activities

Supervision of research degrees in 2013

Lisa Askie
Angela Carberry: PhD

Anthony Keech
Jordan Fulcher: PhD
Jason Harmer: PhD
Kushwin Rajamani: PhD
Ru-Dee Ting: PhD

John Simes
Claudia Dobler: PhD
Jordan Fulcher: PhD

Michelle Cunich
Thomas Lo: PhD

Val Gebski
Farnoush Noushi: PhD

Anandwardhan Hardikar
Ryan Farr: PhD
Wilson Wong: MPhil/PhD
Michael Williams: PhD

Andrzej Januszewski
Daniel Calandro: MPhil

Alicia Jenkins
Paul Benitez Aguirre: PhD
Daniel Calandro: MPhil
Yoon Hi Cho: PhD
Ben Ma: PhD
Jon Noonan: PhD
Kushwin Rajamani: PhD
Harris Schlen: PhD
Ru-Dee Ting: PhD

Chee Lee
Amita Elmadahm: PhD

Sally Lord
Amita Elmadahm: PhD

Andrew Martin
Claudia Dobler, PhD
Deme Karikios, PhD

Deborah Schofield
Hannah Carter (Verry): PhD
Deme Karikios: PhD

Rupendra Shrestha
Hannah Carter (Verry): PhD

Martin Stockler
Deme Karikios: PhD

Degrees awarded in 2013

Belinda Kiely: PhD, The art of oncology communicating survival expectancy to patients with cancer
Katrin Sjoquist: MClinT (R)
Anna Stoklosa: PhD, The concept of evidence in health technology assessment

External committees

Lisa Askie
Antenatal Magnesium IPD International Collaboration (AMICABLE) individual patient data collaboration steering committee

Cochrane Collaboration prospective meta-analysis methods working group (co-convenor) and methods editorial board

Early Prevention of Childhood Obesity (EPOCH) prospective meta-analysis collaboration steering committee (chair)

International Clinical Trials Registry Platform, World Health Organization advisory committee

International Forum for Standards for Research in Children sample size and data safety monitoring committee subcommittee

Meta-Analysis of Preterm Patients on Inhaled Nitric Oxide (MAPPINO) collaboration steering group

Neonatal Oxygen Prospective Meta-analysis (NeOPraM) collaboration steering committee (chair)

NHMRC Project Grant Review Panel for Clinical Trials
Perinatal Antiplatlet Review of International Studies (PARIS) collaboration steering committee, writing committee (chair)

PLUS ONE academic editor

Prenatal Repeat Corticosteroid International IPD Study Group: Assessing the Effects Using the Best Level of Evidence (PRECISE) steering committee

Prevention of Ventilation Induced Lung Injury Collaborative Group (PREVILIG) steering committee

Royal Prince Alfred Hospital clinical trials (ethics) subcommittee

Systematic Reviews editorial board

Anthony Keech
CAMELLIA-TIMI 61 executive committee (lead investigator)

Cholesterol Treatment Trials’ Collaboration (CTTC) (joint coordinator and convenor)

Fenofibrate and Microvascular Events (FAME-1) diabetes trial steering committee (chair)

Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) management committee (principal investigator and study chairman), and quality-of-life and cost-effectiveness, ophthalmology, and scientific substudies committees
Further Cardiovascular Outcomes Research
With PCSK9 Inhibition in Subjects With Elevated Risk. (FOURIER) executive committee
Long-term Intervention with Pravastatin in Ischaemic Disease (LIPID) study
management committee and executive
NHMRC Clinical Trials Centre management review committee and scientific advisory committee
National Health and Medical Research Council grant review panel
PLoS Medicine editorial board
REMoVAL trial steering committee
Royal Prince Alfred Hospital clinical trials (ethics) subcommittee

John Simes
Australia and New Zealand Breast Cancer Trials Group (ANZBCTG) scientific advisory committee
Aspirin to Prevent Recurrent Venous Thrombo-embolism (ASPIRE) trial management committee (chair)
Australasian Gastro-Intestinal Trials Group (AGITG) scientific advisory committee, operations executive committee, MAX trial management committee
Australian New Zealand Clinical Trials Registry (ANZCTR) policy advisory committee
Cholesterol Treatment Trials in Children (CTTCT) (joint coordinator)
Cooperative Trials Group for Neuro-Oncology (COGNO) scientific advisory committee (deputy chair), management committee, operations executive
Benefits of Oxygen Saturation Targeting (Boost) II trial management committee
Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) management committee, executive, and cost-effectiveness subcommittee
Intensive Blood Pressure Reduction for Acute Cerebral Haemorrhage Trial (INTERACT) safety and data monitoring committee (chair)
International Trials of Aspirin to Prevent Recurrent Venous Thrombo-embolism (INSPIRE) steering committee
International Trials of Aspirin to Prevent Recurrent Venous Thrombo-embolism (INSPIRE) steering committee (chair)
Kanyini GAP PolyPill Study safety and data monitoring committee (chair)
Long-term Intervention with Pravastatin in Ischaemic Disease (LIPID) management committee, executive, and biomarker subcommittee

National Health and Medical Research Council Academy
NHMRC Clinical Trials Centre management review committee and scientific advisory committee
Sentinel Biopsy versus Axillary Clearance (SNaC) trial management committee
Sydney Catalyst governing council and scientific advisory committee
Trials associate editor

Elizabeth Barnes
Biosciatics Collaboration of Australia teaching committee
Cooperative Trials Group for Neuro-Oncology (COGNO) scientific advisory committee
DOCTOR trial management committee (AGITG)
Outback trial management committee (ANZGOG)

Jenny Chow
Cancer Institute NSW Neuro-oncology Group (NSWOC), COGNO operations executive, management committee, annual scientific meeting organising committee, COSA executive officers network and associated working groups

Xanthi Coskinas
Australasian Lung Cancer Trials Group (ALTG) scientific advisory committee, operational executive committee; NITRO trial management committee, B2P2M2 trial management committee, FACT in NSCLC trial management committee

Val Gebski
Australasian Gastro-Intestinal Trials Group (AGITG) scientific advisory committee and MAX, TOPGEAR, IMPACT, PAN−1, ATTACHE, ATTAX, TACTIC, DOCTOR, ICECREAM and REGISTER trial management committees and group statistician
Australasian Kidney Trials Network advisory board
Australia and New Zealand Breast Cancer Trials Group (ANZ BCTG) scientific advisory committee, GALA, LATER SORBET and NeoGem trial management committees, and group statistician
Australian and New Zealand Urogenital and Prostate Cancer Trials Group (ANZUP) scientific advisory committee and Accelerated BEP and EVERSUN trial management committees and group statistician

Alpana Ghadge
Benefits of Oxygen Saturation Targeting (Boost) II trial management committee
Lactoferrin Infant Feeding Trial (LIFT) management committee
Westmead international update management committee

Wendy Hague
Aspirin to Prevent Recurrent Venous Thromboembolism (ASPIRE) management committee
Australasian Gastro-Intestinal Trials Group (AGITG) trials operations committee and A La CaRT trial management committee
Australia New Zealand Gynaecological Oncology Group (ANZGOG) trials operations committee
Australian Placental Transfusion Study (AFTS) management committee
Benefits of Oxygen Saturation Targeting (Boost) II management committee
International Neonatal ImmunoTherapy Study (INIS) Australian and New Zealand management committee
International Trials of Aspirin to Prevent Recurrent Venous Thrombo-embolism (INSPIRE) steering committee

Australian New Zealand Gynaecological Oncology Group (ANZGOG) research advisory committee, CALYPSO trial management committee, PARAGON and OUTBACK trial management committees, and group statistician
Bevacizumab use in platinum-resistant epithelial ovarian cancer; CLASSIC (Adjuvant Chemotherapy versus Surgery in Gastric Adenocarcinoma); GAS (Effect of Spinal versus General Anaesthesia in Neonates undergoing Hernia Repair); TO2RFIDO (Targeted Oxygenation in the Reuscitation of Premature Infants and their Developmental Outcome) safety and data monitoring committees
Biosciatics Collaboration of Australia steering and teaching committees
Crown Princess Mary Cancer Care Centre (Westroad) Radiation Oncology research committee
Laparoscopic Surgery versus Hysterectomy in Patients with Cervical Cancer (LACC) trial management committee
NSW Health Central Sydney Area ethics committee clinical trials subcommittee
SNAC trial management committee
Trans Tasman Radiation Oncology Group (TROG) scientific committee, publications committee, and group statistician
Long-Term Intervention with Pravastatin in Ischaemic Disease (LIPID) management committee

Adrienne Kirby
Australian Placental Transfusion Study (APTS) management committee
Benefits of Oxygen Saturation Targeting (BOOST) II trial management committee
Combination Antibiotic Treatment for Methicillin Resistant Staphylococcus Aureus (CAMERA) trial management committee
Faculty of Medicine, University of Sydney postgraduate coursework committee
Improving Delivery of Secondary Prophylaxis for Rheumatic Heart Disease trial management committee
International Trials of Aspirin to Prevent Recurrent Venous Thrombo-Embolism (INSpIRE) steering committee
Long-Term Intervention with Pravastatin in Ischaemic Disease (LIPID) management committee
Randomised Trial on Surgical Treatment for Otitis Media in children Living in Remote Australian Communities trial management committee
Royal Prince Alfred Hospital clinical trials (ethics) subcommittee

Sally Lord
Protocol Advisory Committee (PASC) for Medical Services Advisory Committee
European Federation of Clinical Chemistry and Laboratory Medicine Test Evaluation Working Group

Andrew Martin
Australian and New Zealand Urogenital and Prostate Cancer Trials Group (ANZUP) scientific advisory committee
BLOCADE safety data monitoring committee
ONTRAC, ProCare, INTEGRATE, EPOCH, NeuHorizons, LIFT and EVERSUN trial management committees

Julie Martyn
Australia New Zealand Gynaecological Oncology Group (ANZOG) research advisory committee, operations executive committee and ICON-6, ICON-7, PORTEC-3 and OVAR-16 international steering committees and TRIPOD, Symptom Beneft, PORTEC-3 and Outback trial management committees
Gynecological Cancer Intergroup (GCIG) harmonisation and statistics committee (chair)

Danielle Miller
Australasian Gastro-Intestinal Trials Group (AGITG) scientific advisory committee and TopGEAR trial management committee
Sydney Catalyst operations committee and executive committee

Rebecca Mister
Aspirin to Prevent Recurrent Venous Thromboembolism (ASpIRE) management committee
International Trials of Aspirin to Prevent Recurrent Venous Thrombo-Embolism (INSpIRE) steering committee

Rachel O’Connell
D-Health (a study of vitamin D and health) trial management committee
PARAGON and Symptom Benefit trial management committees (ANZOG)
PAN-1, TACTIC and TOPGEAR trial management committees (AGITG)

Kate Sawkins
Co-operative Trials Group for Neuro-Oncology (COGNO) operations executive committee, and CABARET, CATNON and SEED trial management committees
Deborah Schofield
Advisory Board for Pain Australia advisory board
Australian Research Council College of Experts
Garvan Institute Centre for Clinical Genomics, strategic advisory board
Health Workforce Australia technical advisory group
International Health Workforce Collaborative
International Journal of Microsimulation health editor
NSW Ministerial Advisory Committee on Ageing
Sydney Health Policy Network steering committee
Westmead International Network for Neonatal Education and Research (WINNER Centre) advisory committee

Katrin Sjöquist
Australian Placental Transfusion Study (AFTS) management committee
echocardiography substudy management committee
HSP 90 inhibitor study (HSP90) management committee
PAAEAN management committee

Lucille Sebastian
Australian Asia-Pacific Clinical Oncology Research Development (ACORD) workshop steering committee, alumni committee (chair), future faculty fellow
Australia New Zealand Gynaecological Oncology Group (ANZGOG) research advisory committee and operations executive committee, Symptom Benefit trial management committee, PARAGON trial management committee
Australasian Lung Cancer Trials Group (ALTG) scientific advisory committee and operations executive committee, Upper GI working party, PAN1 trial management committee (CTC clinical lead), INTEGRATE trial management committee (CTC clinical lead) and international trial management group, ATTACHE, ATTAX3 and TACTIC trial management committees

Martin Stockler
Australasian Lung Cancer Trials Group (ALTG) scientific advisory committee and operations executive
Australia Asia-Pacific Clinical Oncology Research Development (ACORD) workshop steering committee (convener)
Australia New Zealand Gynaecological Oncology Group (ANZGOG) research advisory committee
Australasian and New Zealand Urogenital and Prostate Cancer Trials Group (ANZUP) scientific advisory committee, operations executive and Accelerated BEP, Aprepitant, Chemo & Cognition and EVERON trial management committees
Cancer Council Australia national oncology education committee
National Health and Medical Research Council grant review panels for oncology
University of Sydney Faculty of Medicine oncology block committee (chair), EBM in GMP3/4 (chair), evidence-based medicine resource group, integrated clinical attachment committee and University of Sydney Medical Program cancer planning committee

Burcu Vachan
Australasian Gastro-Intestinal Trials Group (AGITG) operations executive
Australian and New Zealand Urogenital and Prostate Cancer Trials Group (ANZUP) operations executive
Australasian Lung Cancer Trials Group (ALTG) operations executive
Cooperative Trials Group for Neuro-Oncology (COCNO) operations executive

Anne-Sophie Veillard
ATTAX3 trial management committee

Kate Wilson
Australasian Gastro-Intestinal Trials Group (AGITG) operations executive committee, scientific advisory committee and annual scientific meeting committee, and MAX, QUASAR2, PETACC6, A La CaRT, GAP, DOCTOR, ICECREAM and ATTACHE trial management committees

Nicole Wong
Australasian Gastro-Intestinal Trials Group (AGITG) operations executive committee, and ATTACHE, LAP07, SCOT, ATTAX 3, PAN1 and TACTIC trial management committees

Sonia Yip
ARCS Australia Annual Scientific Congress organising committee
Australasian Gastro-Intestinal Trials Group (AGITG) operations executive and biological subcommittee, and GAP, IMPACT, INTEGRATE trial management committees
Australasian and New Zealand Urogenital and Prostate Group (ANZUP) scientific advisory committee, renal cell subcommittee, germ cell subcommittee, translational subcommittee, and EVERSON, SORCE
Australia New Zealand Gynaecological Oncology Group (ANZGOG) research advisory committee and cervix working group
Australasian Lung Cancer Trials Group (ALTG) scientific advisory committee
Sydney Cancer Conference co-chair
Sydney Catalyst: Translational Cancer Research Centre of Central Sydney and Regional NSW scientific advisory committee, operations executive committee and T1 working group

Regular academic teaching

Lisa Askie
Advanced systematic reviews, Master of Clinical Epidemiology, University of Sydney (co-coordinator)
Controlled clinical trials, Master of Public Health, University of Sydney
Critical appraisal of evidence, Master of Clinical Trials, University of Sydney
Evidence-based medicine in the clinical years, University of Sydney Medical Program

Anthony Keech
Royal Prince Alfred Hospital cardiology training, and clinical tutor
Controlled clinical trials, Master of Public Health and Master of Medicine, University of Sydney
Master of Clinical Trials, University of Sydney (coordinator)

John Simes
Decision analysis, Master of Public Health and Master of Medicine, University of Sydney

Elizabeth Barnes
Basic sciences in oncology, NSW Health Education Training Institute
Principles of statistical inference, Biostatistics Collaboration of Australia (coordinator)
Statistical principles and clinical trials, Master of Clinical Trials Research, University of Sydney (coordinator)
Controlled clinical trials, Master of Public Health, University of Sydney (co-coordinator)
Michelle Cunich
Health workforce policy analysis, Master of Public Health, University of Sydney

Mark Donoghoe
Basic sciences in oncology, Health Education and Training Institute

Val Gebski
Advanced clinical trials, Biostatistics Collaboration of Australia (coordinator)
Basic sciences in oncology, NSW Cancer Council
Controlled clinical trials, Master of Public Health and Master of Medicine, University of Sydney
Radiation oncology training, RACR trainees, Westmead Hospital, NSW Cancer Council

Wendy Hague
Project management in clinical trials: development, leadership and problem solving, Master of Clinical Trials, University of Sydney

Deme Karikios
Decision analysis, Master of Public Health and Master of Medicine, University of Sydney
Evidence-based medicine in the clinical years, and Oncology and palliative care, University of Sydney Medical Program
Master of Cancer and Haematology Nursing, University of Sydney

Adrienne Kirby
Controlled clinical trials, Master of Public Health and Master of Medicine, University of Sydney
Master of Clinical Trials, University of Sydney (course coordinator)
Trial design and methods, Master of Clinical Trials, University of Sydney (coordinator)

Chee Lee
Global biomarker studies, Master of Clinical Trials, University of Sydney

Sally Lord
Biomarker studies, Master of Clinical Trials, University of Sydney
Decision analysis, Master of Public Health, University of Sydney

Kristy Mann
Advanced systematic reviews, Master of Clinical Epidemiology, University of Sydney
Basic sciences in oncology, NSW Cancer Council
Critical appraisal of evidence and Understanding trial methods, Master of Clinical Trials, University of Sydney

Andrew Martin
Decision analysis (coordinator) and Controlled clinical trials (coordinator), Master of Public Health and Master of Medicine, University of Sydney
Interpretation of trial analyses (coordinator), Master of Clinical Trials, University of Sydney

Rebecca Mister
Project management in clinical trials: development, leadership and problem solving, Master of Clinical Trials, University of Sydney

Rachel O’Connell
Advanced clinical trials, Biostatistics Collaboration of Australia (coordinator)
Advanced trial design, Master of Clinical Trials, University of Sydney

Deborah Schofield
Health workforce policy analysis, School of Public Health, University of Sydney

Katrin Sjoquist
Evidence-based medicine, University of Sydney Medical Program
Australia & Asia-Pacific Clinical Oncology Research Development (ACORD) faculty
Project management in clinical trials: development, leadership and problem solving, Master of Clinical Trials, University of Sydney

Martin Stockler
Australia & Asia-Pacific Clinical Oncology Research Development (ACORD) convenor, and international steering committee workshop (chair)
Making sense of cancer clinical trials for NSW medical oncology trainees (convenor)
Clinical epidemiology for physician trainees, Royal Prince Alfred Hospital
Evidence-based medicine in the clinical years, (chair and coordinator), and Oncology and palliative care (block chair), University of Sydney Medical Program
Medical oncology clinical training, Royal Prince Alfred Hospital
Patient-based measures, Master of Medicine, University of Sydney (course coordinator)
Project management in clinical trials: development, leadership and problem solving, Master of Clinical Trials Research, University of Sydney

Burcu Vachan
Project management in clinical trials: development, leadership and problem solving, Master of Clinical Trials Research, University of Sydney

Anne-Sophie Veillard
Trial design and methods, Master of Clinical Trials, University of Sydney

Sonia Yip
Global biomarker studies, Master of Clinical Trials, University of Sydney (course coordinator)

42. Fox PN, Chatfield MD, Beeth JM, Allison S, Della-Fiorentina S, Fisher D, Turley K, Grimison PS. Factors delaying chemotherapy for breast cancer in four urban and rural oncology units. ANZ Journal of Surgery. Published online 18 Sep 2013.

Book chapter